
1

Implicit Memory Tagging: No-Overhead Memory Safety
Using Alias-Free Tagged ECC
Michael B. Sullivan, Mohamed Tarek Ibn Ziad, Aamer Jaleel, Stephen W. Keckler
NVIDIA | ISCA 2023 Full Talk

2

What is Memory Safety?

• A program property that guarantees memory objects can only be accessed:

1. Between their intended bounds

2. During their lifetime

• Many programming languages (C/C++, CUDA/OpenACC) do not ensure memory safety.

3

What is a Memory Safety Violation?

• A program property that guarantees memory objects can only be accessed:

1. Between their intended bounds

2. During their lifetime

• Many programming languages (C/C++, CUDA/OpenACC) do not ensure memory safety.

• Memory safety violations are both a correctness and security issue
• e.g., non-deterministic program output, buffer-overflow attacks

Buffer Over-/Under-flow

Use After Free

4

The Importance of Memory Safety

• Memory safety violations are remote attacks

• They are perhaps the most common security exploits

• E.g., from Microsoft’s Common Vulnerabilities and Exposures (CVE) database

~70% Memory Safety

5

Memory
Object

Memory
Object

Memory Tagging for Memory Safety
A mostly-hardware scheme to detect memory safety violations

Program
Virtual

Memory

Program
Physical
Memory

L
o
c
k

T
a
g
s

PointerKey Tag

❶ Key Tag is Inserted into
Upper Pointer Bits

❷ Lock Tag associated
with physical

memory entries.

(Storage overheads.)

6

Memory
Object

Memory
Object

Memory Tagging for Memory Safety
A mostly-hardware scheme to detect memory safety violations

Program
Virtual

Memory

Program
Physical
Memory

L
o
c
k

T
a
g
s

PointerKey Tag

❶ Key Tag is Inserted into
Upper Pointer Bits

❷ Lock Tag associated
with physical

memory entries.

❸ Detect/Report a Memory Safety Violation
if the Key Tag ≠ Lock Tag

(Performance Overheads)

7

The Pros and Cons of Memory Tagging

Program
Memory

Memory
Object

Memory
Object

Memory
Object Pointer

Memory
Object

Tag

PointerTag

PointerTag

Lock
Tags

+ Simple
+ Handles adjacent overflow
+ Handles non-adjacent overflow
+ Popular and Used in Industry
 (e.g., SPARC ADI, ARM MTE)

- Storage and movement of lock
 tag meta-data

- Probabilistic security for
 non-adjacent overflows

Tradeoff

8

Memory Tagging on GPUs

Lock
Tags

+ Simple
+ Popular and Used in Industry
 (e.g., SPARC ADI, ARM MTE)
+ Handles adjacent overflow
+ Handles non-adjacent overflow

- Storage and movement of lock
 tag meta-data

- Probabilistic security for
 non-adjacent overflows

Storage of lock tag
meta-data is especially

costly on capacity-limited GPUs!

e.g., An NVIDIA H100 GPU
(80GB HBM3 DRAM)

Movement of lock tag
meta-data is especially

costly for fine-grained access
workloads

(e.g. graph, SPMV)

9

Two Implementation Alternatives
1) Tag Carve-Out, 2) ECC Stealing

① Tag Carve-Out

• Meta-data in dedicated embedded carve-out

• Tags are cached once on-chip
• aka “Disjoint” tag storage [1]

② ECC Stealing

• Meta-data in dedicated sideband redundancy

• We assume this is taken from ECC redundancy
• aka “Widened” tag storage [1]

Data Tags

Data Access Tag Access

Data Tags

Data & Tag Access

[1] Samuel Jero, Nathan Burow, Bryan Ward, Richard Skowyra, Roger Khazan, Howard Shrobe, and Hamed Okhravi. 2022.
 TAG: Tagged Architecture Guide.
 ACM Comput. Surv. 55, 6, Article 124 (June 2023), 34 pages.

10

Implementation Alternatives Pros and Cons
Benefits/Drawbacks to 1) Tag Carve-Out, 2) ECC Stealing

① Tag Carve-Out

• Meta-data in dedicated embedded carve-out

• Tags are cached once on-chip

② ECC Stealing

• Meta-data in dedicated sideband
redundancy
• We assume this is taken from ECC

redundancy

+ Works on any underlying memory

- Storage overheads
- Tag movement overheads

+ No storage overheads (above ECC alone)
+ No perf. overheads (above ECC alone)

- Greatly degraded reliability!

11

Slowdown of Embedded Tagging
Using cycle-accurate simulation

TS=16b
TG=32B

TS=8b
TG=32B

Slowdowns Across Three Workload Suites Max/Average

Memory Bandwidth Bound Programs
with Poor Locality!

3.25% storage overheads
Up to ~30% slowdown

6.5% storage overheads
Up to ~40% slowdown

12

Stealing ECC Drastically Reduces Reliability
~2x SDC risk for every bit stolen… L

2x ~2x

13

Tag Size vs Security
Larger Tags à Better Security

• Non-adjacent memory security increases with the number of unique valid tags, with detection rate:

• Prior memory tagging approaches are limited to TS=4b, for performance and storage reasons. This
limits the detection rate to ≤ ⁄!" !#

• Next, we show that Implicit Memory Tagging allows for large tags to be used without performance,
storage, or resilience concerns, improving probabilistic security by 2 or 3 orders of magnitude.

14

❷ Implicit Memory Tagging (IMT):

No-Overhead Memory Safety
Using Alias-Free Tagged ECC

15

Alias-Free Tagged ECC
A general mechanism for tag equivalence checking in ECC

• ECC codes for memories are shortened, because of power-of-two sized data blocks.

• E.g., 10b SEC-DED could protect 501 data bits, but GPU memory accesses are 256b…

ECC Data Shortening

10b 256b 245b

16

Alias-Free Tagged ECC
A general mechanism for tag equivalence checking in ECC

• ECC codes for memories are shortened, because of power-of-two sized data blocks.

• E.g., 10b SEC-DED could protect 501 data bits, but GPU memory accesses are 256b…

• Alias-Free Tagged ECC uses the unused error correction capabilities for tag checking.

• Requires a minor-yet-careful redesign of the ECC code...

ECC Data Shortening

10b 256b 245b

Tag

17

Alias-Free Tagged ECC Main Take-Aways
100% tag mismatch detection, no false positives, maintains ECC detection and correction

1. Unambiguous tag mismatch: 100% of tag mismatches are detected (in the absence of a data error).

2. Proper TMM attribution: Tag mismatches are reported as-such.

3. Preserving Single-Bit Error Correction: Single-bit correcting ECC still operates as expected.

4. Maximum Tag Size: For most codeword sizes, up to a TS=R-1 is supported (R check-bits).

18

Alias-Free Tagged ECC Main Take-Aways
100% tag mismatch detection, no false positives, maintains ECC detection and correction

1. Unambiguous tag mismatch: 100% of tag mismatches are detected (in the absence of a data error).

2. Proper TMM attribution: Tag mismatches are reported as-such.

3. Preserving Single-Bit Error Correction: Single-bit correcting ECC still operates as expected.

4. Maximum Tag Size: For most codeword sizes, up to a TS=R-1 is supported (R check-bits).

See the paper for:

1. The derivation of the maximum possible tag size.
2. A principled method to construct maximum-tag-size alias-free tagged ECC codes.

19

Implicit Memory Tagging: Main Idea Is Simple

Implicit Memory Tagging: Alias-Free Tagged ECC Applied to Memory Safety!
• Overcomes the main limitations of Memory Tagging
• HW: identical to “ECC stealing”, but with modified ECC encoders/decoders
• ~0 storage overheads, ~0 perf. overheads, ~0 resilience regression, high security

Use Alias-Free Tagged ECC for memory tagging to ensure memory safety

20

Implicit Memory Tag Checking Example

IMT ECC
Encoder

Data Check-Bits
(Tag+Data)

DataLock Tag

Write

21

Implicit Memory Tag Checking Example

Data

Data Check-Bits
(Tag+Data)

IMT ECC
Decoder

Key Tag

Read

IMT
ECC

Decoder

Possibly-Erroneous Codeword

Data DUE?TMM?

Tag Mismatch Detectable-Uncorrectable
Data Error

22

The Advantages of Implicit Memory Tagging
Superior performance, security, resilience, with no storage overheads

Baselines Iso-Security (10b ECC, minimum SEC-DED) Iso-Security (16b ECC)

Tag Carve-Out:
Storage & Performance

Overheads

ECC Stealing:
Degraded Reliability

Both:
Weak Probabilistic Security

23

The Advantages of Implicit Memory tagging
Superior performance, security, resilience, with no storage overheads

Iso-Security (10b ECC, minimum SEC-DED) Iso-Security (16b ECC)IMT-10: 10b ECC, minimum SEC-DED IMT-16: 16b ECC, same as GPU DRAMBaselines

Improvements
regardless of

amount of ECC
redundancy

24

The Advantages of Implicit Memory tagging
Superior performance, security, resilience, with no storage overheads

Baselines Iso-Security (10b ECC, minimum SEC-DED) Iso-Security (16b ECC)

Larger TG and
No Storage/Perf Improvement

Larger TG and
Worse Storage/Perf

No Error Correction and
Large SDC RiskNo Error Correction

25

Conclusion

C/C++ on CPU and CUDA/OpenACC on GPU is memory unsafe.

We dove into memory tagging.
 Popular! SPARC ADI (sideband tags) and ARM MTE (embedded tags)
 Limited security OR high overheads (storage/performance/reliability)

Alias-Free Tagged ECC: a general mechanism to check tag equivalence in ECC.
 Up to a 15 bit tag is possible, using all available upper pointer bits

Implicit Memory Tagging: Alias-Free Tagged ECC applied to memory safety.

 Avoids downsides of prior memory tagging approaches.
 0 Performance / 0 Resilience / 0 Storage Overheads, Superior Security

Implicit Memory Tagging: No-Overhead Memory Safety Using Alias-Free Tagged ECC

26

Backup

27

(Optional) Avoiding Mis-Attribution
Domain-specific sanity check. Provides 100% precise attribution.

We maintain the assigned tags in the driver.

The address-to-tag mapping is only queried on a fatal IMT event!

28

Tag Carve-Out HW Implementation (e.g., ARM MTE)
Embedding tags into a dedicated carve-out…

LDST uTLBMIO L2 CACHE

HW
Memory
Safety

MetaData
Fetch

Tags are cached densely-packed in LLC…
But sparse workloads will incur ~2X traffic to memory

VA-Tag| Data | Lock-Tag Data / MTE Tag

Memory
Safety

TagCheck

DRAM

L2 miss

Lock Tag

Lock Tag Lock Tag
Carve-Out

L1 CACHE

29

ECC Stealing HW Implementation (e.g., SPARC ADI)
“Steal” ECC bits at every level of the memory hierarchy…

Also, widen all address busses to the full 64b width to carry
both the { Key Tag, Pointer Address }

30

Further Slowdown Analysis
Slowdown is high for 1) bandwidth-bound, 2) high read bloat programs L

A. Low DRAM Bandwidth
à Low Slowdown

B. High DRAM Bandwidth
Low Read Bloat

à Medium Slowdown

C. High DRAM Bandwidth
High Read Bloat
à High Slowdown

31

Possible attacks

Information Leakage
E.g., use a buffer overread to read private data.

Arbitrary Code Execution
E.g., overwrite a function pointer or return address to hijack the control flow, OR
overwrite existing functions with your own code!

Data Corruption
E.g., use a buffer overflow to overwrite critical data.

Denial of Service
E.g., intentionally crash a server program.

32

Alias-Free Tagged ECC Visualization
A High-Level Set Intersection View

Some Risk of Mis-Attribution (DUEàTMM), at least in general case.

Not a big deal!

(More on this later…)

33

