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ABSTRACT
A Cyber-Physical System (CPS) is defined by its unique interactions between digital (cyber) computation and
physical motion. Their hybrid nature introduces new attack vectors, but also provides an opportunity to design
new security defenses. In this paper, we present a new domain-specific security mechanism, YOLO, that leverages
physical properties such as inertia to improve security.

YOLO is simple to describe. It goes through two operations: Reset and Diversify, as frequently as possible –
typically in the order of a few seconds. Resets mitigate attacks that aim to achieve persistence and enhance the
power of diversification techniques. Due to inertia, CPSs can remain safe even under frequent resets.

We introduce an analytical approach to evaluate the feasibility of a YOLO-ized system. Using this analytical
model we define the constraints on reset periods in order to maintain the CPS’s stability. We evaluate our
approach in simulation and on two real systems: an engine control unit (ECU) of a car and a flight controller
(FC) of a quadcopter. From our experiments, we determine that resets can be triggered frequently, as fast as
every 125ms for the ECU and every second for the FC, without violating safety.
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1. INTRODUCTION
A Cyber-Physical System (CPS) represents the synthesis of computational and physical processes encompassing
a wide range of applications in transportation, robotics, manufacturing, and critical infrastructure. Current
state of the art defenses for CPSs can be understood as defenses for the physical portion of the CPS, viz., the
sensors, and cyber portion of the CPS, viz. the control and communication software. The physical defenses
leverage physical properties to detect and mitigate sensor spoofing, sensor jamming, and other similar types of
attacks [1, 2]. The cyber defenses are largely ports of techniques originally developed for traditional computing
systems. As a result, they may not be as effective in the CPS domain.

In this paper, we propose a new security resiliency mechanism specifically for CPSs involving motion, that
leverages their unique cyber and physical properties. A key innovation in our approach is that we take advantage
of properties like inertia, i.e., the ability of the CPS to stay in motion or at rest, and its ability to tolerate transient
imperfections in the physical world, to survive attacks. Our mechanism, You Only Live Once (YOLO), is best
understood with an example. Consider an unmanned drone: even if engine power is cut off, it will continue
to glide; similarly, even if a few sensor inputs are incorrect, the drone will continue to operate as the system
is designed to handle intermittent sensor errors that can occur during normal operation. In YOLO, we take
advantage of these features. We intentionally reset the system periodically to clear software state that may have
been manipulated by an attacker. During resets, we rely on inertia to continue operating and diversification [3]
to prevent the same attacks from breaking the system.

YOLO offers three major security benefits. First, the effects of resets, i.e, wiping memory and bringing
software to its initial state, make it difficult for the attacker to persist on the system. Second, the periodicity of
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Figure 1: CPS System Model. The portion enclosed in the dotted area corresponds to the safety critical
components.

resets enforces a limit as to how quickly an adversary has to carry out an attack. Finally, diversification is used
to force an adversary to develop a new attack strategy after every reset.

Realizing YOLO is not without challenges. One key challenge is to determine how to safely apply resets
while guaranteeing stability. To evaluate the feasibility of our approach, we define a theoretical model by which
designers can evaluate YOLO on their CPS. We validate our methodology by implementing a simulation of a
YOLO-ized DC Motor. Our results show that YOLO has a negligible performance effect while limiting the
adversary’s ability to attack the CPS.

Furthermore, we experimentally evaluate YOLO on two popular stateful CPSs with different inertia, safety
requirements, and control complexity. Using an engine controller unit (ECU) and measurements from a real
combustion engine, we discuss and measure the performance and safety impacts. Additionally, we also perform
measurements on a quadcopter’s flight controller (FC) that involves more sophisticated control. We find that
YOLO-ized versions of these systems tolerate multiple frequent resets safely.

Closely related to YOLO are works by Abdi et al. [4] and Mertoguno et al. [5]. Mertoguno et al. [5] observe
that unique physical properties of CPS can be used to improve their security. They devise a system that takes
advantage of inherent redundancy available in CPS along with inertia and to design a Byzantine Fault Tolerant
system. Concurrently with our work, Abdi et al. [4] propose a restart based approach to secure CPSs. In contrast
to YOLO, their design requires additional hardware components for maintaining the safety of the system during
resets. This may make it more difficult to retrofit into legacy systems, increases cost, and requires a larger
trusted computing base (TCB). YOLO has no such requirement.

The rest of the paper is organized as follows: In § 2, we present an overview of CPS relevant to our work.
We then describe our adversary model in § 3, present YOLO in § 4, provide a discussion on YOLO’s security
parameters in § 5 and provide a theoretical analysis in § 6. We next provide experimental evaluation on two
representative case studies—an ECU and an FC—in § 7. We list our limitations in § 8, we survey related work
in § 9, and conclude in § 10.

2. SYSTEM MODEL
In this section, we provide an introduction to cyber-physical systems in terms of their overall architecture and
computing resources.

2.1 Architecture
Current CPSs have four main subsystems: a subsystem that interfaces with the physical world that includes
the sensors and the actuators, a subsystem that takes inputs from the sensors and generates commands for the
actuators—the control subsystem,—a subsystem that takes in external commands, and finally a subsystem the
provides non-critical functions. In most CPSs today these subsystems are not isolated from each other creating
a quagmire of security problems. However, recognizing these dangers, emerging CPS designs include primitives
for isolation (such as separating out the networks in a car), sensor authentication and encryption to name a few.
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We set our work in this emerging model and we consider the safety and security of only the software that
provides control over the physical system (i.e. the safety critical components). The enclosed portion of Fig. 1
illustrates our model. The rationale for this choice is to focus our attention on aspects that are unique to CPS. A
wide variety of systems fall into this model, such as unmanned transport vehicles or industrial control systems.

2.2 Resources
CPS resources can vary wildly. However, a large subset of these systems rely on microcontrollers. They tend
to execute from ROM or Flash chips with limited memory (typically hundreds of KBs or a few MBs), have
no memory management unit (MMU), only a memory protection unit (MPU); and the performance offered by
these microcontroller-based systems is orders of magnitude lower compared to traditional microprocessor-based
systems such as servers and smartphones. The primary driving factor for the system design choices is the cost
of components, and a need to provide real-time deterministic execution characteristics which preempts use of
speculative techniques for achieving high performance. As a result of these stringent resources and requirements,
these systems usually run a Real-Time OS (RTOS).

Porting of existing security defenses that were not designed for these low-resource devices can be difficult
or sometimes impossible. Similarly, these architectural or platform differences present challenges to mounting
certain classes of attacks. For instance, modifying even a small amount of data, say one byte, can require an
entire Flash sector to be modified, incurring latencies in the order of hundreds of milliseconds to seconds. So
persistent attacks on microcontrollers can take several seconds while the same can be accomplished in hundreds
of nanoseconds to microseconds on traditional systems – nearly seven orders of magnitude difference.

3. ADVERSARY MODEL
For this work, we consider an adversary that seeks to exploit the software running on the controller via a network
input interface. The assumptions we make are:

• An attacker has complete knowledge of the system internals. The physics of the system and the control
algorithms used are known to the attacker.

• The attacker’s goal is to sacrifice the integrity of the physical subsystem and bring it under their control.
The adversary’s intention is to hijack the targeted system and/or prevent it from achieving its intended
mission.

• An attacker’s proximity to the target is ephemeral. An adversary may not always be within communication
proximity; they may be limited by their equipment or other environmental factors.

We do not consider Denial-of-Service (DoS) attacks to be within scope as it goes against our assumption of
having the adversary bring the system under their control. While we do not consider attacks on sensors and
actuators as our defense targets software, an adversary may use them as entry points to exploit software.

3.1 Attack Surfaces
A CPS has three attack surfaces:

(A) Sensors & Actuators: The CPS’s interface to the physical world is through sensors and actuators. This
is susceptible to physical threats, such as tampering of sensors and/or actuators, sensor spoofing, and jamming.

(B) Software: The control software that handles incoming queries, processes sensor data, and computes
actuator commands. This is susceptible to more traditional software threats, such as those stemming from
memory vulnerabilities, integer overflows, etc.

(C) Network: The network that connects the various components to the controller. This is susceptible to
threats, such as man-in-the-middle attacks.

Attacks on CPS can be broadly categorized into attacks on the physical or cyber subsystems.
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3.1.1 Physical-subsystem Attacks
Physical attacks typically target state estimation and control; in fact, much work has been done on this front.
Attacks on state estimation usually manifest themselves in one of two ways: sensor spoofing and sensor jamming.

Most, if not all of these physical attacks require a degree of spatial proximity: the jamming or spoofing device
needs to keep up with the motion of the CPS for continued action. Examples of recent work in this area by
Davidson et al. [1] describe how to spoof optical flow sensors in quadcopters.

It is important to note that while these attacks are physical in nature, they can affect the cyber component
of the system and provide the opportunity for certain cyber attacks to become effective. For example, they
may indirectly trigger certain vulnerabilities, such as integer overflows and underflows. Maliciously manipulated
sensor values can cause incorrect branches to be executed in the control algorithms, or worse trigger CPU specific
vulnerabilities.

3.1.2 Cyber-subsystem Attacks
Due to platform differences, attacks in the cyber portion of a CPS are a subset of those seen on more traditional
systems. Memory vulnerabilities, such as code reuse and data corruption, are as much a problem for CPSs as
for other systems. For example, Checkoway et al. provide an automotive specific discussion on some of these
threats [2].

4. YOLO: You Only Live Once
YOLO is a secure resiliency mechanism tailored for CPSs. It combines two orthogonal, but complementary
techniques: reset and diversification. This combination in conjunction with the unique properties of CPSs, plays
off each other to provide stronger security than either technique on its own. We discuss the intuition behind
YOLO below.
Why Reset? YOLO takes advantage of a simple and universally applicable panacea for a multitude of software
issues, resetting. Even among expert users, a reset is one of the preferred solutions for numerous problems in
the computing world. The simple intuition behind the effectiveness of this approach is that software is tested
most often in its pristine state, as discussed by Oppenheimer et al. [6]. With respect to the overall health of the
system, the conditions of a reset provide a predictable and well defined behavior.

From the viewpoint of thwarting an attacker, the restoration of state, whether it be code or data typically
helps prevent an adversary’s ability to corrupt the system. This provides increased resiliency against a large
class of attacks. For example, a simple reset can remove the effects of exploits that live in volatile memory. By
frequently performing resets, YOLO limits the effects an adversary might have, as well as, the time needed to
complete an attack. In other words, an adversary has a bounded time horizon over which they can affect the
system, simply because malicious effects are frequently removed.
Why Diversify? Typically, once a vulnerability is identified, an adversary can continuously carry out an attack
as long as the vulnerability remains present and if they are able to keep up with the system. To remedy this, some
variability must be introduced into the system; otherwise, the same vulnerability would persist. Diversification
introduces randomness to prevent the system from being compromised by the same method continuously. The
benefits of such an approach have been shown to be successful in a number of related works [3]. As a consequence
of diversification, YOLO is able to lower the adversary’s chance of success.
Why Reset & Diversify? Diversification can help protect data that needs to be carried across resets. Some
CPSs may require certain data that cannot be re-learned during normal operation. For example, sensor cali-
bration data of a quadcopter can only be obtained while it is not in flight. Therefore, it must be preserved
across resets. One mechanism to protect such data is to take advantage of diversification. Diversification can be
used to change the location of the data on every reset, making it harder for an adversary to locate it. Another
mechanism is encryption. Alternatively, the diversification strategy may encrypt the data with a rotating key
that is changed on every reset, making it more difficult for an adversary to manipulate data.
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The benefits of diversification alone can in fact be less significant than one would expect [7]. Because these
techniques rely on probability, there are cases in which they fail. Resets are used to add resiliency in situations
where attacks can succeed.
Why does this work for CPS? CPSs and more specifically dynamic CPS — those involving motion — have
a number of properties that allow for interesting security techniques to be explored. These properties stem from
the design, algorithms, and physics of CPSs. The main properties that YOLO leverage are:

Inertia: CPSs have inertia — the resistance of an object to any change in its motion. This also means that
these systems take time to react to external stimuli. This characteristic is essential for YOLO as it asserts that
these systems can continue operation and exhibit a tolerance to missed events, either by design or due to faults.

Relearning: The fact that CPSs can observe their environment using sensors is fundamental in their design
and operation. This implies that the state of the system that caused the actuation can be relearned by the
sensors. Roughly speaking, this is the same as storing the state of the system (before actuation) to a data
store (e.g. database) outside the system (the environment), and then reading it back to the system (through
the sensors). This feature is critical for YOLO as it allows for certain state to be discarded during resets, i.e.,
transmitted out of the system before a reset, and re-observed once out of reset.

While these properties are unique to CPS, some of their advantages can usually be emulated in traditional
computing systems, but at a cost. For example, traditional systems can rely on replication to emulate some
of the benefits of inertia. This replication usually involves additional memory or hardware. To account for the
lack of observability, traditional systems might require a secure data store or some external entity from which to
recover their state. Restoring this state and ensuring consistency may be a more costly than what is typically
involved in the CPS domain.
How easily is this realized? The YOLO mechanism does not require complex and expensive additional
hardware. A system designer has flexibility in choosing how to trigger resets either via software or a cheap
external clock. This makes the task of deploying YOLO on legacy systems much easier.
What YOLO parameters can be tuned? System designers can select appropriate reset & diversification
strategies according to their constraints. At a minimum, a reset implementation should clear the running (volatile)
memory of the program. Systems with more flexible reset timings should be able to tolerate more complete reset
mechanisms, such as restoring code in non-volatile memory. Additionally, depending on the timing constraints
of a system, different diversification techniques [3] may be applied.

5. YOLO SECURITY PARAMETERS
As mentioned in § 2, a large fraction of CPSs rely on software running on microcontrollers. Unlike their tradi-
tional computing counterparts, cyber-attacks on CPSs encompass not only the effects of software exploits, but
additionally the physical reaction to an exploit. Determining the effectiveness of YOLO involves: (a) analyzing
timeliness with respect to how long an attack takes and (b) the effects of a reset on an exploit depending on
where in memory the exploit resides.

We focus on two main classes of vulnerabilities an adversary is likely to exploit: integer overflow/underflow,
and memory safety. Empirical studies have determined these two vulnerabilities to be responsible for nearly 80%
of the recent exploits [8].

5.1 Memory
Depending on the adversary’s goals, exploits move between different types of memory. In addition to timeliness,
the conditions provided by a reset affect exploits differently depending on where in memory they reside.
Volatile: Most exploits typically begin their lives in volatile memory. YOLO is extremely effective against those
exploits. There are reasons for an adversary not to move to non-volatile memory, especially if they wish to
leave as minimal a trace as possible. An ideal reset restores the entirety of memory. However, this may not be
possible for all applications, especially those that need to persist state in volatile memory across reset boundaries.
Depending on the complexity of the application the amount of persisted state may also vary in size. The smaller

5



this state, the more security benefits YOLO can provide. This persisted state can be protected with different
encryption schemes depending on its size. In other words, small amounts of persisted state need not pose a
significant threat.
Non-volatile: When the goals of an adversary are longer term, they typically must achieve persistence in some
form of non-volatile memory. Threats such as rootkits, spyware, and ransomware all typically aim to make the
transition to non-volatile memory. As previously mentioned, an ideal reset should restore the entirety of memory
including the non-volatile portion. In some cases, limitations of the platform may make this impractical. For
example, the limited lifetime of flash memory imposes restrictions on how often the system can be reprogrammed.

5.2 Timeliness
The timeliness of an attack is based on the time an exploit makes an observation of the system and the time
at which an attack is completed. We use the framework developed by Evans et al. [7] to study the effectiveness
of YOLO with respect to the time to attack. There are two cases to consider: (i) the time for the exploit and
(ii) the time for the attack. Typically, these terms are used to refer to the same thing, but due to the nature of
CPS we make an explicit distinction. The time for the exploit corresponds to the time needed by an adversary
to achieve full control flow hijack of the software. The time for the attack is the time for the exploit in addition
to the time for the physical system to react to an adversary’s commands—their objective. Therefore, if the reset
period for YOLO is less than the time needed for the exploit, the adversary is prevented from ever exploiting
the system. Similarly, if the reset period is less than the time for an attack, the adversary is prevented from
achieving their goal.
Exploit Time: We first examine the time required to exploit the software. Depending on the level of control a
vulnerability affords the adversary, the time required for them to mount an exploit can vary. In the worst case,
they may have access to a zero-time operation i.e, an integer vulnerability used to make a security decision which
can trigger the malicious behavior instantly. In this situation, YOLO does not prevent the exploit, but will rely
on the side-effects of resets to provide resiliency.

To leverage memory safety vulnerabilities on YOLO-ized like systems that use diversification, an adversary
must do work proportional to their knowledge of the program layout and the strength of diversification. The
strength of diversification affects how difficult it is to trigger the vulnerability and how hard it is to hijack
control flow. Assuming defenses that prevent code injection are in place, adversarial strategies can be broadly
categorized into: layout blind and layout aware.

Layout blind exploits use information such as crashes to aid in searching the address space of a program for
useful gadgets to craft the exploit. Given that timeliness is important to YOLO’s security, let us consider the
derandomization exploit by Shacham et al. [9] as an example to get a sense of the timescales at which resets
should occur at. The system being exploited in their evaluation was a 32-bit 1.8GHz Athlon machine. Their
fastest recorded time was 29s with an average of around 3.6 minutes. Consider the same scenario on a typical
microcontroller running at 200MHz. As a rough estimate, if we simply scale these values by the processor
frequencies, this results in a 9x slowdown turning a 29s exploit into one that takes over four minutes. As long
as the YOLO-ized system can reset promptly these types of exploits can be prevented.

Layout aware exploits like Just-In-Time Code Reuse (JIT-ROP) [10] leverage pre-existing knowledge, such
as the location of a code pointer, to disclose and harvest the run-time memory of the program to search for
useful gadgets to craft the rest of the exploit. These exploits are difficult to practically compare given differences
in code size between CPS applications and traditional applications. As proposed, published exploits leveraging
memory disclosures similar to JIT-ROP target systems with a JIT engine, such as web browsers. This leaves
an open question as to whether these exploits are threats to CPSs where JIT engines are avoided due to timing
constraints.
Attack Time: Even if an attacker successfully exploits the system, YOLO relies on the assurances of the
physical properties to resist the negative impact of an adversary until the next reset period. Given the types
of attacks seen in practice, the adversary’s goals usually involve compromising the physical plant. Inertia and
other physical properties limit the rate of change of the system. Essentially, this means that attacks take longer
as they not only involve the exploit, but the time an adversary requires to influence the system to meet their
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goals. For example, Urbina et al. [11] discuss metrics and analyze how these physical properties are used by
intrusion detection techniques to place bounds on the rate an adversary disturbs the system. The authors found
that if the adversary’s rate of attack can be made sufficiently slow, the physical properties will allow the system
to resist the negative effects of the attack. In turn, this means the system still meets its original objective.

6. THEORETICAL ANALYSIS
In this section, we introduce an analytical approach to evaluate the feasibility of a YOLO-ized system. We define
the constraints on reset periods in order to maintain the CPS’s stability.

6.1 Problem Formulation

Figure 2: The closed loop model of a CPS. A physical plant with a transfer function G(s), and the YOLO-ized
controller, with a transfer function P (s).

The framework shown in Fig. 2 consists of a closed-loop system, which includes a CPS and a YOLO-ized
controller. The CPS has a transfer function G(s), while the transfer function of the controller combined with
YOLO is represented by P (s). YOLO acts as an ON/OFF switch that resets the controller periodically. To
formulate this switching behavior, we refer to the time interval between any two successive resets as Tr. Tr is
composed of two main components as shown in (1).

Tr = Tu + Td (1)

where Tu is the controller up-time, in which YOLO is inactive, and Td is the controller down-time, in which the
controller is out of service due to the YOLO’s effect.

Based on YOLO’s state, the closed loop transfer function of Fig. 2 takes two different forms. The first form
occurs when YOLO is inactive (i.e. the controller output is directly connected to the plant input, during Tu), as
shown in (2). The second form occurs when YOLO is active (i.e, the controller is in the reset mode, during Td),
as shown in (3).

Finactive(s) =
y(s)

r(s)
=

P (s)G(s)

1 + P (s)G(s)
(2)

Factive(s) =
y(s)

u(s)
= G(s) (3)

where y(s) and r(s) represent the closed loop system output and the input reference, respectively. u(s) is the
plant input signal. This system is viewed as a switched system [12], a hybrid dynamical system composed of a
family of continuous-time subsystems with rules orchestrating the switching between the subsystems. The state
space model of our switched system is given by (4).{

ẋ = Aix+Bir,

y = Cix+Dir
(4)
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where x ∈ Rn is the state, r ∈ Rm is the reference input, and y ∈ Rp is the system output. The matrices Ai, Bi,
Ci, and Di are the system matrices, where i ∈ {1, 2}. By representing (2) and (3) using the general nth order
transfer function (5), we define the main matrices using the controllable canonical form.

F (s) =
b0S

n + b1S
n−1 + · · ·+ bn−1S + bn

Sn + a1Sn−1 + · · ·+ an−1S + an
(5)

Ai =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1

 Bi =


0
0
...
0
1


Ci =

[
(bn − anb0) (bn−1 − an−1b0) · · · (b1 − a1b0)

]
Di = b0

For consistency, we refer to the case, in which YOLO is inactive (Finactive) and active (Factive), by the index
i = 1 and i = 2, respectively.

6.2 Stability Analysis
To prove that the system is safe under YOLO’s reset, the stability of the switched system shown in (4) should be
guaranteed. There exist considerable amount of work in control theory literature, which investigate the stability
of switched systems [13]. These works mainly depend on Lyapunov functions, a method used to prove the
stability of dynamic systems without requiring the actual solution of the system’s ordinary differential equations
to be available [12].

Among the available stability analyses, we adopt the average “dwell time” approach proposed by Zhai et
al. [14] that maintains the stability of a system containing Hurwitz stable (i.e., all eigenvalues lie in the left half
complex plane) and unstable subsystems. This configuration maps to the inactive and active forms of YOLO.
The “dwell time” concept is defined as the time between consecutive switchings [13] and represents the minimum
boundary that should be respected to guarantee stability. The average “dwell time” allows some consecutive
switching to violate the dwell time constraint as long as the total average switching time is no less than a specified
constant, τ [13].

Zhai et al. [14] show that if τ is chosen sufficiently large and the total activation time of unstable subsystems
(Td) is relatively small compared with that of Hurwitz stable subsystems (Tu), then exponential stability of a
desired degree is guaranteed. The stability conditions are shown in (6) and (7), respectively (see [14] for further
details).

τ ≥ a

λ∗ − λ
(6)

Tu

Td
≥ λ+ + λ∗

λ− − λ∗ (7)

where λ− and λ+ are positive scalars representing the minimum and maximum eigenvalues of the stable and
unstable subsystems, respectively. For any given λ ∈ (0, λ−), λ∗ is chosen arbitrary, where λ∗ ∈ (λ, λ−). Finally,
a is the maximum of a set of scalars ai, which satisfy the following condition [14].{

∥eAit∥ ≤ eai−λit i ∈ S
∥eAit∥ ≤ eai+λit i ∈ U

(8)

where S represents the stable subsystems and U represents the unstable ones. In our scenario, switching times,
Tu and Td, are fixed. Thus, to maintain stability, (Tu + Td)/2 should be greater than τ . By using the plant and

8



Figure 3: Simple abstraction of a DC motor. The voltage source, v; the rotational speed of the shaft, θ̇; the
moment of inertia of the rotor, J ; the motor viscous friction constant, b; the electromotive force & motor torque
constants K; the electric resistance, R; and the electric inductance, L.

controller parameters, given in (2) and (3), to solve for τ and Tu/Td, given in (6) and (7), with the help of the
above boundary rule (8), a piecewise Lyapunov function (V (x) = xTPix) [12] is constructed to ensure the global
exponential stability of the system [14]. Pi are positive definite symmetric matrices, Pi ∈ Rn, which are directly
obtainable by solving the linear matrix inequalities (LMIs), given by (9).{

(Ai + λiI)
TPi + Pi(Ai + λiI) < 0 i ∈ S

(Ai − λiI)
TPi + Pi(Ai − λiI) < 0 i ∈ U

(9)

where I is the identity matrix. There exist many efficient methods for obtaining Pi numerically, such as the LMI
solvers of Matlab Robust Control Toolbox. Next, we show that this analysis is easily extended to include any
plant and controller.

6.3 Case Study
To evaluate YOLO, we have modeled a closed loop system where the plant, G(s), is a DC motor and the controller,
P (s), is a Proportional-Integral-Derivative (PID) controller.

6.3.1 Problem Formulation
Fig. 3 gives a simple abstraction of the DC motor. The open-loop transfer function of the DC motor is given
in (10), where the rotational speed, θ̇, is the output and the voltage, v, is the input [15].

G(s) =
y(s)

u(s)
=

K

(Js+ b)(Ls+R) +K2
(10)

We further simplify the model by assuming that L << R and hence obtain a first order system, as shown
in (11).

G(s) =
Ko

Tos+ 1
(11)

where Ko and To are calculated by using (12) and (13), respectively.
Ko =

K

R b+K2
(12) To =

R J

R b+K2
(13)

The PID controller is a simple yet versatile feedback compensator structure [15]. Its transfer function is
shown in (14).

P (s) =
u(s)

e(s)
= Kp +

Ki

s
+Kds (14)

where Kp, Ki, and Kd represent the proportional, the integral, and the derivative gains, respectively.

9



From (11) and (14), the closed loop transfer functions, Finactive(s) and Factive(s), are developed, as shown
in (15) and (16).

Finactive(s) =
KoKds

2 +KoKps+KoKi

(To +KoKd)s2 + (1 +KoKp)s+KoKi
(15)

Factive(s) =
Ko

Tos+ 1
(16)

By comparing the aforementioned equations with (2) and (3), and using n = 2, the values of the matrices
Ai, Bi, Ci, and Di are obtained as shown below. One extra zero-state has been added to Factive(s) in order to
make it a second order system as Finactive(s).

A1 =

[
0 1

−KoKi

To+KoKd

−(1+KoKp)
To+KoKd

]
B1 =

[
0
1

]
C1 =

[
KoKiTo

(To+KoKd)2
Ko(KpTo−Kd)
(To+KoKd)2

]
D1 =

KoKd

To +KoKd

A2 =

[−1
To

0

0 0

]
B2 =

[
1
0

]
C2 =

[
Ko

To
0
]

D2 = 0

6.3.2 Evaluation
We assume the following typical set of parameters for the DC motor: J = 0.01, b = 0.1, K = 0.01, R = 1. By
using the following gains for the PID controller; Kp = 100, Ki = 200, Kd = 10, one obtains the following Ai

matrices:

A1 =

[
0 1.0000

−18.1818 −10.0009

]
A2 =

[
−10.01 0

0 0

]
Using basic matrix algebra, one obtains λ(A1) = {−7.6125,−2.3884} and λ(A2) = {−10.01, 0}. From which,

λ− = 2.3884 and λ+ = 10.01 are obtained. We choose λ ∈ (0, λ−) = 0.1 and λ∗ ∈ (λ, λ−) = 2. From (8), a1 = 0
and a2 = 2.0146. Hence, a equals 2.0146. Finally, by using (6) and (7), we get τ = 1.0603s and Tu/Td = 30.9202.
This leads to a possible selection of Tr > 2τ = 2.15s with Td = 67ms.

Additionally, using Matlab Robust Control Toolbox to solve (9) would give us the following two positive definite
symmetric matrices, which are required to construct Lyapunov stability.

P1 =

[
0.4873 −0.0321
−0.0321 0.0479

]
P2 =

[
0.0269 0

0 0.0551

]
It is worth noting that choosing different values for the arbitrary scalars λ and λ∗ would result in different

valid combinations for τ and Tu/Td. For instance, Fig. 4a summarizes the allowed minimum reset times (Tr) and
the corresponding Tu/Td. Every point on the graph represents one selection of λ and λ∗. This flexibility of λ
and λ∗ is highly important in order to satisfy any hard constraint proposed by the controller (i.e, the controller
might require a certain Td to operate normally after a reset).
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Figure 4: Simulation results for the DC motor.

Furthermore, we simulate the system shown in Fig. 2 by using Matlab Simulink with the aforementioned
parameters for the DC motor and controller. Fig. 4b shows the output time response for a Baseline system
versus a YOLO-ized one (Tr = 2.15s) and (Td = 67ms). YOLO introduces approximately a 4% drop in engine
speed. This result highlights how YOLO can be realized solely relying on the unique CPS properties.

7. EXPERIMENTAL ANALYSIS
In order to empirically evaluate YOLO, we study two distinct CPSs: an Engine Control Unit (ECU) and a
UAV flight controller (FC)∗. Each case study provides its own challenges to determining the feasibility of YOLO,
because each one is different with respect to the physical component under control and thus the complexity of
the controller. The main questions we study are: for which reset periods TR is the system safe (a) for the ECU
and (b) for the FC. Similarly, we also study how the performance of the system is impacted by resets.

7.1 Case Study: Engine Control Unit
7.1.1 Description
An ECU controls the combustion process an engine. For a combustion engine to produce the right amount of
power, the ECU must inject fuel into the internal chamber, mix it with air, and finally ignite the air-fuel mixture,
all at the right timings.
How it works: There are two rotating parts, the crank and camshaft, inside an engine. The ECU observes their
revolutions to determine what the state of the engine is. The number of input signals that must be observed
to correctly determine the engine state depends on the shapes of the crank and camshaft. Then, the control
algorithm interpolates the time to properly schedule ignition and injection events. Once the ECU has determined
in which phase of the combustion cycle the engine is in, it will use other measurements from sensors, such as
throttle position, temperature, pressure, air-flow and oxygen to accurately determine the air-fuel mixture to be
injected.
Platform: We use the rusEFI open-source ECU and a Honda CBR600RR engine, a very commonly engine used
by FSAE racing enthusiasts. The source-code is written in C/C++ running on top of an open-source real-time
library operating system called ChibiOS and is designed to run on a STM32F4-Discovery board, a widely popular
micro-control unit (MCU). This board contains a 168MHz ARM Cortex-M4 processor with 192KBytes of SRAM
and 1MB of non-volatile flash memory. The MCU contains only a Memory Protection Unit (MPU) with eight
protection regions, which may be leveraged by diversification techniques.
Reset Mechanism: Realizing YOLO involves selecting an appropriate reset mechanism. For the ECU, we
choose to power cycle the MCU, which effectively clears out all hardware state. Simple power cycling, or reboots,
∗Videos for some of the experiments can be found at: https://bit.ly/2fxB5QS
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Figure 5: A sweep of the reset interval TR and reset downtime Td to study the effects on engine speed. We
observe that for certain combinations of TR and Td the engine speed approximates 100%.

provide strong security advantages as it can be triggered externally, without any software. Additionally, it
protects against attacks which may freeze the configuration of certain hardware peripherals. Power cycling
incurs certain costs, specifically the cost of rebooting the chip and the time for the startup routines to reinitialize
the controller. However, we found that the cost of rebooting the chip was on the order of microseconds and
thus completely inconsequential compared to the latency of the startup routine. The non-interactive version of
rusEFI’s startup time is approximately 20ms.
Diversification Strategy: We implement a static variant of Isomeron [16] that provides execution path ran-
domization. Isomeron introduces a hybrid approach that combines code randomization with execution path
randomization. Its main objective is to mitigate code-reuse attacks. The high level idea is the following: two
copies of the program code are loaded into the same address space and execution is randomly transferred between
the two on every function call. The original implementation of Isomeron uses dynamic binary instrumentation
techniques which is not feasible on resource constrained devices. We leverage a binary rewriter to implement a
static version of Isomeron which makes the technique suitable for our targeted resource constrained devices.

7.1.2 Evaluation
The synchronization time for the ECU is dependent on the number of engine cycles that must be observed.
The ECU must observe two engine cycles to determine whether it is synchronized with the engine’s rotation.
Additionally, it must observe enough engine cycles to compute properties that must be integrated over time
(eg. acceleration requires three engine cycles). Assuming an engine speed of 4500RPM (i.e., approx 75Hz), each
engine cycle takes 13ms, where synchronization takes 39ms. Combining the previous software timing constraints
along with the physical safety constraints, we set a range of TR and Td to perform our experiments according to
(7).
Resets: Fig. 5 shows the change in engine speed—for an unloaded engine†—as a percentage for the sweep. Main-
taining the engine speed, can be satisfied for a wide range of TR and Td where the engine speed is approximately
100%. We note what happens when the engine speed drops significantly. At some point, the ignition & injection
steps are unable to generate enough energy to overcome friction, and the engine comes to a stop. We refer
to the specific engine speed at which this failure occurs as the stopping threshold. As we more frequently, we
observe lower engine speeds without crossing the stopping threshold during operation as stay within the system’s
safe region. We also note that the actual stall threshold varies non-linearly with TR and Td, most likely due to
environmental factors and the large variability in the internal combustion process. Under engine load, we expect
the stall threshold to vary less due to the added inertia. For our system, we can therefore conclude that there
are specific combinations of TR and Td for which safety can be satisfied even as the system misses events.
Diversification: For the ECU we studied the effects of our Isomeron implementation. The results showed our
version introduced a constant slow down of approximately 2.13x, primarily due to its use of a hardware random
number generator used to implement the Isomeron diversifier that switches between functions. While this slow
†No access to a dynamometer was available.
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down may seem large, the original application had more than sufficient slack to accommodate it. To put this into
perspective, even with the slow down, our ECU was still within typical timing accuracy of commercial systems
(2− 3◦ delay). To further test the limits of our system, we swept ignition and injection delays up to 8x, but saw
no observable effects on RPM for our engine.

7.2 Case Study: Flight Controller
7.2.1 Description
The FC is designed to ensure the stability and control of an aircraft. It does so by controlling translation along
the x, y, z directions and rotation about the x, y, z axes (i.e, the attitude).
How it works: The flight controller is primarily responsible for ensuring attitude stability while aiding a
pilot or performing autonomous flight. It must read all of the sensor data and filter the noise in order to
calculate proper output commands to send to its actuators. In particular, we focus on quadrotor helicopters
more commonly referred to as quadcopters. Controlling these quadcopters involves operating four independent
rotors to the provide six degrees of freedom. Sensors measuring a number of physical properties are then fused
together to estimate the position and attitude of the quadcopter. This estimation, similar to the case of ECU,
require a certain number of observation samples before an output is produced. This output is then used by other
components that determine the best command actions for the system.
Platform: We use the PX4 open-source FC with a DJI F450 quadcopter air-frame, a very common DIY kit
favored by enthusiasts. The PX4 FC provides attitude and position control using a series of sensors, such as
GPS, optical flow, accelerometer, gyroscope, and barometer. The PX4 controller software includes a variety of
flight modes ranging from manual, assisted, to fully autonomous. The source-code is written in C/C++ and
supports multiple kinds of OS and hardware targets. Specifically, we use the Pixhawk board based on the same
series of MCU as that used in the ECU case study.
Reset Mechanism: Similar to the ECU case study, we first attempted simple reboots. The downtime Td

for PX4 was found to be around 1.5s. This higher reset time in comparison to the ECU was not unexpected
due to the higher complexity of the quadcopter controller. Given the more sensitive physical dynamics of the
quadcopter, simple rebooting is not effective, i.e., the quadcopter crashes very often, prompting the need of a
more efficient approach. This led us to explore alternate, more performant reset mechanisms. We found that
much of the startup time was spent in initializing data structures and setting up the system for operation. So, we
create a snapshot of RAM after all the initialization is complete and use it to start the system in approximately
3ms‡. This snapshot can additionally be verified and signed for increased security.

The snapshot is stored in a special region of flash and at the following boot, the saved state is restored. The
special flash region is protected, and locked by the MPU. This provides a consistent restoration point for the
system’s lifetime. Snapshot-ing was implemented as an extension of the NuttX library OS used by the Pixhawk
PX4 target. The 3ms that the snapshot restoration takes is primarily dominated by the time required to write
data from flash to RAM.

When the snapshot is taken, and what data is stored in the snapshot, have implications on the capabilities
of the system. Therefore we allow the designer to annotate data regions to be persisted and placed them in a
memory location excluded from the snapshot & restoration mechanism. This is accomplished via source code
compiler directives and linker modifications.

Depending on the flight mode for the quadcopter the snapshot has different requirements as to what data
can be reset and persisted. For the autonomous flight mode for example, coordinates for the quadcopter’s flight
path could appropriately be made part of the snapshot taking care to use absolute coordinates were possible.
However, including the flight path in the snapshot would prevent the quadcopter’s path from being modified
mid-flight. If this capability is desired, the data would need to be persisted across resets and protected in some
way as discussed in § 5. The assisted flight mode has fewer limitations. For the assisted flight mode, which only
requires the pilot inputs, a simple snapshot of RAM taken after the sensors have been calibrated is sufficient,
as the system can recover the state that it needs by re-observing the environment. For optimal security, the
‡Code is available at http://bit.ly/2Wa5JER
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Figure 6: The effects of resets on the quadcopter stability for various reset intervals. These results, quantify our
observations from the poll conducted.
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Figure 7: The results of the poll conducted to determine at which reset interval (TR) the quadcopter will start
to become unstable during hover. From this we can determine a minimum TR for the system.

snapshot could be taken once in a controlled and secure environment, as long as, the system was initialized with
the correct parameters.
Diversification Strategy: Here, we chose to implement a simple variation of conventional stack canaries.
Canaries, or integers placed in memory just before the stack return pointer, are useful against stack overflows.
On each reset, we randomly generate new canaries used by the program.

7.2.2 Evaluation
Resets: To quantify the effects of resets, the standard deviation of the quadcopter’s attitude rate over time was
used. The results are shown in Fig. 6. The results show little impact on the attitude for TR > 1s and a large
spike for smaller values. This indicates that for TR ≤ 1s the stability of the system is roughly equivalent to the
system without YOLO. At lower TR periods, we see a large spike in the standard deviations, which correspond
to when we observe the system to start oscillating resulting in decreased controllability.

To better gauge the threshold at which a pilot would begin to detect these oscillations, or in other words, the
lower limit for TR, we conducted a survey among a set of 20 students. The survey was conducted using an ABX
test methodology where various videos of the quadcopter with YOLO during flight for different TR were shown.
Before conducting the survey, users were shown an example video of a stable and unstable flight. They were
then shown videos in a random sequence and asked to determine whether there were any observable oscillations
during hover flight. The results are shown in Figure 7 indicating that oscillations become significantly observable
somewhere between TR of 0.5 to 1 second.
Diversification: Similar to the ECU, we sought to observe any difference in the system’s behavior introduced by
diversification. Our simple strategy in the case of the quadcopter, had a negligible effect. This is not surprising
as stack canaries have significantly low overheads. To further stress the effects of delays on our system, we
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effectively lowered the control loop rate by 1.5x and 2x which resulted in approximately a 7.6% and 11.3%
change in the attitude standard deviation, respectively. In normal flight, we noticed no visual sign of these
effects or any noticeable difference in maneuverability with respect to pilot inputs.

8. LIMITATIONS AND MITIGATIONS
Wear & Tear: YOLO may have miscellaneous effects on CPSs that may not have been observable during
our evaluation. These effects can include additional wear and tear of components for example. It is difficult
to say whether YOLO may have long term effects. However, after having explored these systems, the physical
subsystems are built with ample tolerance margins such that we may never see any effects for the duration of
the system’s lifetime. For example, the rotors on quadcopters are Brushless DC motors (BLDC). BLDCs rely
on electronic commutation as opposed to mechanical commutation and therefore do not suffer from much wear
and tear.
Multiple Interacting Components: Our two case studies both look at systems with single computing compo-
nents. Larger and more complex may have multiple interacting components in which timing and communication
challenges arise. In order to realize YOLO on such systems, one possible solution is to think of each component
as a microservice and follow a reset strategy similar to that proposed by Candea et al. [17] which involves recur-
sively rebooting services depending on the time slack available to them. Given that the timings of interactions
between components is part of the design, this information can be leverage to implement YOLO.
Temporary loss of control: In some CPSs even a temporary loss of control due to resets may be unacceptable.
These cases have to be carefully evaluated. If temporary loss of control is completely unacceptable, then multiple
replicas are necessary to provide fail safe operation. In this situation, interleaved resets can be used to implement
YOLO to enhance security of the ensemble system. The practicality of this approach is validated by its use in
the Boeing 787 which recently deployed interleaved resets [18] in response to a software error that triggered a
simultaneous reset of all flight control systems (a safety issue, not a security problem).

9. RELATED WORK
CPS security can be broadly categorized along three dimensions: the threats covered by the defense, the nature
of the defense, and the suitability of the defense to typical CPS environments. Tbl. 1 presents security techniques
relevant to the paper ranging from general security techniques to those specific to CPSs. The references used
here, especially for the general-purpose security techniques, are not meant to be exhaustive. These are just some
of the most recent and most closely related to YOLO.
Threat Covered: Following the duality of CPSs, we categorize the threats covered into two groups: (a) Cyber—
These attacks target the cyber subsystem. This group are those seen on traditional computing systems. (b)
Physical—These attacks target the physical subsystem. More specifically, it is those attacks which target sensors
and actuators. The general security techniques only focus on cyber attacks whereas CPS specific techniques
primary focus on physical attacks.
Defense Type: We categorize defenses into four groups based on when the methodology that is applied (during
construction or deployment; and what properties are provided by the defense under attack): (a) Secure-by-
Construction (SBC)—These defenses focus on preventing the root cause for vulnerabilities. (b) Detection—
These defenses focus on detecting system exploitation during deployment. It does not involve response to a
detected attack. (c) Graceful Degradation—These defenses focus on mitigating the malicious effects of an attack
to maintain acceptable levels of performance or to prolong the life of the system. (d) Impersistence—These
defenses focus on denying the attacker an ability to gain a foothold or getting rid of the foothold the attacker
may have gained.
Target: In order to evaluate whether a technique can be widely applied to CPSs, we consider two items: (a)
Microcontroller Compatible—The technique can be run on a microcontroller with limited processing power and
memory such as a Cortex-M based board. (b) Additional Logic —This means additional hardware is necessary
for implementing the technique.
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SBC ✓ ✓ ✓ ✓
Detection ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Graceful D. ✓ ✓ ✓ ✓ ✓ ✓ ✓
Impersist. ✓ ✓ ✓

Target
µC Comp. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Add. Logic ✓ ✓ ✓

While the general security techniques focus on software intrusion detection, the CPS specific techniques focus
on detection of attacks on physical interfaces, namely sensors and actuators. YOLO fits into this category by
making attacks that exceed the reset interval impossible.

Graceful degradation under physical attacks has been an active research area in CPS security. The main
idea here is to continue operating, perhaps suboptimally, even under attack. In most of these papers, the threat
that is considered is an availability attack, and thus continued operation is synonymous with security. Recently
proposed techniques [11, 27, 28] are approaching a point where non-detectable levels of destruction can only
affect the system so slowly that stealthy spoofing attacks will become negligible or can be coped with in practical
ways.

Impersistence is one of the crucial aspects in CPS security in that it is almost impossible to re-install the
firmware during their operation. Moreover, it is essential for many CPSs that recovery be performed without
human intervention. One of the closest techniques to YOLO among general security techniques is proactive
recovery [24]. However, their approach assumes redundancy (i.e. additional hardware) in place of inertia.

10. CONCLUSION
It is natural to ask if CPSs are indeed unique, if so, how CPS defenses should be different from general-purpose
defenses. This paper provides one answer to this question. We construct a new resiliency mechanism that is
only practical on CPSs because of their properties. In contrast to prior work on CPSs, which focus mostly on
sensors, our defense leverages both cyber and physical properties for a tailored defense of the cyber portion of
the CPS. We show that new, simple to implement, low-resource, and effective defenses are possible if we leverage
the unique physical properties of CPS.

We present a new CPS-tailored cyber defense called YOLO that combines reset and diversification. YOLO
leverages unique properties of cyber-physical systems such as inertia fo its implementation. In a traditional
system, frequent resets will degrade the usability of the system. In CPSs, however, the physical subsystem can
continue to move and operate even during resets because of its inertia.
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We show that YOLO is an effective practical solution for an engine control unit and a flight controller. From
our experiments, we determine that resets can be triggered frequently, as fast as every 125ms for the ECU and
every second for the flight controller, without violating safety requirements.

YOLO has the potential to alleviate problems that plague CPSs in industry. First, these systems have a
long shelf life typically around 10 years if not more. Therefore, there is a need to provide solutions for the large
amount of legacy systems out there. Secondly, there is the issue of the long time-to-market and its implications
on computing resources. CPSs usually have a production cycle of 3 to 5+ years meaning that the hardware they
use is as old, if not older by the time they are released.

In this work, we have not only demonstrated the feasibility of YOLO, but have highlighted the need to design
CPS specific security techniques. Given YOLO’s simplicity, we believe it to be a practical solution that will
inspire others to consider CPS tailored security. The results of our work show that resets, which may have been
previously thought of as unrealistic due to safety can indeed be done. When applicable, YOLO may be especially
useful for legacy systems and for emerging unmanned CPSs such as drones.
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