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CUDA, OpenCL, and OpenACC are the primary means of writing general-purpose software for NVIDIA GPUs,
all of which are subject to the same well-documented memory safety vulnerabilities currently plaguing software
written in C and C++. One can argue that the GPU execution environment makes software development more
error prone. Unlike C and C++, CUDA features multiple, distinct memory spaces to map to the GPU’s unique
memory hierarchy, and a typical CUDA program has thousands of concurrently executing threads. Furthermore,
the CUDA platform has fewer guardrails than CPU platforms that have been forced to incrementally adjust
to a barrage of security attacks. Unfortunately, the peculiarities of the GPU make it difficult to directly port
memory safety solutions from the CPU space.

This paper presents cuCatch, a new memory safety error detection tool designed specifically for the CUDA
programming model. cuCatch combines optimized compiler instrumentation with driver support to implement
a novel algorithm for catching spatial and temporal memory safety errors with low performance overheads.
Our experimental results on a wide set of GPU applications show that cuCatch incurs a 19% runtime slowdown
on average, which is orders of magnitude faster than state-of-the-art debugging tools on GPUs. Moreover, our
quantitative evaluation demonstrates cuCatch’s higher error detection coverage compared to prior memory
safety tools. The combination of high error detection coverage and low runtime overheads makes cuCatch an
ideal candidate for accelerating memory safety debugging for GPU applications.
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1 INTRODUCTION

Programs authored in memory unsafe languages, such as C and C++, are vulnerable to malicious
attacks in the worst case, and random crashes in the most benign cases [Song et al. 2019; Szekeres
et al. 2013; van der Veen et al. 2012]. Recent studies indicate that common memory related bugs
such as buffer overruns and use-after-frees account for roughly two thirds of all exploitable bugs in
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CPU programs [Google 2019; Miller 2019]. The ramifications of memory safety vulnerabilities in
GPU applications are less studied, but recent work suggests that they are also exploitable [Di et al.
2016; Miele 2016; Park et al. 2021].

In response to security vulnerabilities and costly program crashes, the industry has created several
memory safety tools and mitigation techniques to identify bugs in CPU programs. Programmers
can use software-only debugging tools, such as Google’s Address Sanitizer [Serebryany et al.
2012] and Valgrind [Nethercote and Seward 2007], to discover latent bugs during the development
process [Song et al. 2019]. The CPU industry is also exploring hardware support to protect memory
unsafe languages with low overheads [ARM 2019; Oracle 2015].

While industry and research communities have made significant progress toward improving
the safety of C and C++ programs, GPU acceleration platforms have received less attention until
recently. NVIDIA’s Compute Sanitizer [NVIDIA 2022a] (and cuda-memcheck [NVIDIA 2022c]
before it) is the only commercial tool available for memory safety debugging on GPUs. Fortunately,
the research community is beginning to take the threat of buggy GPU code seriously. Recent work
has investigated both software-only and hardware approaches for hardening GPU programs. The
peculiarities of GPU acceleration platforms preclude the trivial adoption of CPU-based solutions,
and therefore prior research for GPU memory protection developed tailor-made approaches.

Prior approaches for GPUs are deficient in either their memory safety algorithm or the applied
code instrumentation technology. For example, GMOD [Di et al. 2021] and cJARMOR [Erb et al. 2017]
are software-only approaches that offer low runtime overheads but provide limited error detection
coverage. GPUShield proposes new hardware support to limit runtime overheads, but cannot be
used on existing GPUs [Lee et al. 2022]. On the other end of the spectrum, NVIDIA’s Compute
Sanitizer, which relies on dynamic binary instrumentation, requires no hardware modifications
and can handle arbitrary GPU binaries, but incurs significant runtime overheads.

In this paper, we present a software-only debugging tool called cuCatch. By combining a novel
memory safety algorithm with efficient code instrumentation, we show why cuCatch fills an
important gap in the existing tools and research landscape and provides better error detection
coverage for GPU compute programs on commodity GPUs. cuCatch provides the following features:

e cuCatch uses a novel algorithm, called shadow tagged base & bounds (Shadow TBB), which
enables better error detection coverage compared to prior memory safety algorithms, such
as canaries, tripwires, and memory tagging.

e cuCatch employs a novel base pointer analysis technique to eagerly retrieve the appropriate
metadata for performing the memory safety checks.

e cuCatch is implemented in NVIDIA’s backend compiler as an instrumentation pass, with the
necessary runtime support implemented in the driver. We implement several optimizations
to reduce the runtime overheads for detecting memory safety errors in the different GPU
memory spaces (i.e., global, local, and shared).

o cuCatch deterministically detects several memory safety violations and probabilistically
detects others while incurring low runtime overheads (19% on average).

2 BACKGROUND
2.1 GPU Background

We first describe the high-level characteristics of GPUs and their associated programming models,
especially with respect to memory safety. Though the concepts we describe are general to GPU
computing platforms, our descriptions use NVIDIA’s terminology.

2.1.1  GPU Architecture. GPU programs execute on programmable processing cores called stream-
ing multiprocessors (SMs). A GPU program consists of host-side functions, which run on the
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1 __global__ void contrived(int »global arr, int val) . .

2 { Mnemonic Action

3 int local_arr[10]; // 24-bit swizzled address. ATOMS Shared memory atomic

4 __shared__ shared_arr[10]; // 24-bit address. LDS Shared memory load

5 int «p; // 64-bit generic address, inferred. STS Shared memory store

6 switch (val) { ATOMG Global memory atomic

7 case 0: p = global_arr; break; LDG Global memory load

8 case 1: p = local_arr; break; STG Global memory store

9 case 2: p = shared_arr; break; LDL Local memory load

10 bs STL Local memory store

11 // p is a 64-bit "generic" pointer. ATOM Generic memory atomic

12 memcpy(p, src, 10xsizeof(int)); LD Generic memory load

13 } ST Generic memory store
(a) Unified addressing example. (b) Memory operations.

Fig. 1. GPU memory spaces. CUDA allows memory allocation to global, local, and shared memories, and the
GPU hardware interprets the addresses of each space differently.

CPU, and device-side functions, which CUDA refers to as kernels. The CUDA programming model
allows the creation of thousands of parallel threads, which are grouped into convenient physical
entities called warps that span at most 32 threads. The threads in each warp execute in a single
instruction, multiple thread (SIMT) fashion to improve efficiency, all fetching from a single Program
Counter (PC) in the absence of control flow. In most kernels, many warps map to a single GPU core,
or SM. A GPU consists of multiple SMs along with SM-local scratchpad memories and a memory
hierarchy consisting of L1 caches, a shared L2 cache, and multiple memory controllers.

2.1.2  GPU Memory Spaces. GPU programming models allow memory allocation within different
memory spaces, each of which behaves uniquely. Figure 1a shows a simple kernel that uses global,
local, and shared memory. GPU programming models fundamentally handle heap and stack accesses
differently. NVIDIA’s platforms map heap allocations to the global memory space, which has a
64-bit address space, whereas they map stack allocations to a thread-private 24-bit local address
space. While global and local memories are backed by the same memory hierarchy, due to their
different access patterns, the underlying hardware operates on global and local memory objects
differently. For instance, one thread cannot access another thread’s local memory; and to make more
efficient use of the memory system in the SIMT programming model, the memory unit swizzles
addresses to interleave a warp’s local memory accesses so that a (full) warp touches a contiguous
32 X 4 byte block of data when all threads access the same address on their private stacks.

The global memory can be device memory (which can only be accessed from the GPU device)
or host-pinned or unified memory (both of which can be accessed from both the GPU and host).
Besides global and local memories, GPU programming models provide a software-managed memory
region called shared memory, which is shared among threads that belong to the same thread block
and execute on the same SM. While global memory can be accessed by all threads, it can be orders
of magnitude slower than shared memory, and as such high-performance programs tend to heavily
rely on shared memory. As Figure 1b shows, the instruction set architecture (ISA) includes distinct
instructions for operating in each space.

To simplify programming in the face of these different memory spaces, CUDA uses a unified
address space and generic pointers that can point to shared, local, or global memories. Instructions
such as ATOM, LD, and ST can act on local, shared, or global memory, depending on where in the
unified address space the pointer points. Figure 1a provides an example where the type system
cannot infer the space to which p points for the definition at line 12 and therefore allocates a generic
pointer for p. The availability of multiple memory spaces on GPUs makes it challenging to enforce
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(a) Spatial memory safety vulnerabilities. (b) Temporal memory safety vulnerabilities.

Fig. 2. Different types of memory safety vulnerabilities affecting GPU memory spaces.

memory safety policies as the maintenance and access of the metadata differ for each memory
space. Sections 3 and 4 elaborate on the challenges of protecting heterogeneous memory spaces.

2.2 Memory Safety Background

Memory safety is a major concern for low level programming languages, such as C and C++ [Szek-
eres et al. 2013; van der Veen et al. 2012], and their extensions, such as CUDA [Di et al. 2016; Miele
2016]. Memory safety is a program property that ensures memory allocations can only be accessed
between their intended bounds and during their lifetime [Song et al. 2019]. Violating any of these
requirements may result in memory corruption. For example, accessing allocations beyond their
intended bounds, such as buffer overruns, violates spatial memory safety. Accessing allocations
beyond their lifetimes, such as using an allocation after freeing its memory or reading uninitialized
variables, violates temporal memory safety. Given a memory safety vulnerability, attackers can
potentially achieve read and write capabilities that can lead to privilege escalation, information
leakage, and denial of service on the victim system [Szekeres et al. 2013].

2.2.1  Memory Safety on GPUs. A GPU program can have a spatial and/or temporal memory safety
vulnerability. Figure 2 shows different memory safety vulnerabilities affecting GPU memory spaces.
Out-of-bounds access. For device and unified global memory regions, out-of-bounds (OOB)
memory safety errors can target nearby allocations (i.e., adjacent) or arbitrary memory locations
(i.e., non-adjacent). For shared memory, OOB memory safety errors abuse single and multiple
shared buffers, which might be statically allocated as part of the GPU kernel code or dynamically
allocated via a kernel launch parameter. Finally, a buffer under-/over-flow can cause local memory
OOB accesses within the same stack frame or across different frames. This applies to regular buffers
with statically-known sizes and dynamically-allocated local buffers (i.e., using alloca).!
Temporal safety. We categorize temporal safety vulnerabilities according to the GPU memory
space. For example, temporal safety vulnerabilities on device and unified memory are referred to
as use-after-free (UAF) whereas temporal safety vulnerabilities on local memory are referred to
as use-after-scope (UAS). As the GPU shared memory space cannot be deallocated during kernel
execution, it is neither vulnerable to use-after-free nor use-after-scope errors.

Double-free and Invalid-free. Memory safety errors such as double free occur when the same
global pointer is freed twice. An invalid free occurs when the memory deallocation API (e.g., free
or cudaFree) is invoked on a pointer that does not point to the starting address of an allocation.
Impact. A memory safety vulnerability in a GPU program may lead to multiple threats. Examples
include leaking the secret keys from a GPU-accelerated encryption algorithm or manipulating a self
driving vehicle’s navigation software. Prior work demonstrated spatial memory safety violations
on GPUs by using buffer overflows to overwrite function pointers on the heap and stack memory

lalloca is a device-side built-in function that can be used to allocate dynamic memory on the stack [Sundaram et al. 2021].
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Fig. 3. Categories of different algorithms used for detecting memory-safety vulnerabilities.

to hijack the program execution flow [Di et al. 2016; Miele 2016]. A recent paper presented an
end-to-end GPU attack that degraded the inference stage of a deep learning model [Park et al. 2021].
Starting with a buffer overflow vulnerability in the deep learning code, the authors (1) overwrote a
function pointer to control the program execution, (2) injected their own malicious code, and (3)
nullified the main decision-making functions in the GPU code pages.

2.2.2  Memory Safety Algorithms. To detect memory safety violations, three main approaches have
been previously explored in the literature: tripwires, memory tagging, and base & bounds.
Tripwires (also known as memory blocklisting). As shown in Figure 3a, the key idea is to guard
the boundaries of all memory allocations with redzones or tripwires that generate an exception
if ever accessed by a load or a store instruction. A popular tripwire-based approach is Google’s
Address Sanitizer [Serebryany et al. 2012], which maintains a few bits for each byte in memory to
decode whether the byte is allocated, freed, or allocated but not initialized. From an error detection
standpoint, tripwires are vulnerable to non-adjacent buffer overflows, in which an out-of-bounds
violation jumps over the redzones and corrupts data elsewhere without being detected. As per a
recent report from Microsoft security research, non-adjacent overflows account for almost one
third of the total memory safety vulnerabilities in C and C++ workloads [Bialek et al. 2020].
Memory tagging. Instead of storing the metadata only in memory to mark whether a memory
allocation is allocated or not, the metadata is divided between the allocation and the pointer, as
shown in Figure 3b. The key idea is to assign a color or tag for each new allocation and to use
this color to tag each byte in physical memory that belongs to the allocation. Then, the tag is
stored in the upper bits of the pointer that points to the allocation. Every time a memory access
occurs, the hardware compares the tag from the pointer to the tag of the accessed memory byte
and triggers an exception if they do not match. The rule of thumb here is to assign different colors
to adjacent allocations such that buffer overflows and underflows can be easily detected. Examples
of memory tagging approaches include SPARC’s ADI [Oracle 2015] and ARM’s MTE [ARM 2019].
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While memory tagging does a great job of catching accidental memory safety violations, its reduced
tag size (typically four bits) provides low entropy against non-adjacent OOB accesses as colors will
be repeated once the program allocates more than 16 allocations.

Base & bounds (also known as memory permitlisting). To avoid the limitations of memory
tagging, base & bounds explicitly stores the base and size information of each memory allocation
and looks up this information for every executed load and store to validate the memory access. As
the exact base and size are tracked, all overflows including the non-adjacent ones can be detected
offering the highest possible error detection coverage across the three approaches. The metadata
can be stored in a disjoint table that is indexed either using (1) the pointer location in memory (also
known as shadow base & bounds [Nagarakatte et al. 2009; Oleksenko et al. 2018]) or (2) an identifier
that is stored in the upper pointer bits (also known as tagged base & bounds [Lee et al. 2022], which
is shown in Figure 3c). Unfortunately, the first approach comes with high metadata maintenance
complexity, while the second approach does not scale when the number of live allocations exceeds
the size of the disjoint table, which is limited by the number of unused upper pointer bits.

2.3 Goals and Non-goals

2.3.1 Goals. The main goal of this paper is to provide GPU developers with a tool for detecting
as many memory safety errors as possible with a low runtime cost. We assume the availability of
the parallel thread execution (ptx [NVIDIA 2022e]) code, which is an intermediate representation
emitted by the front-end compiler after partially compiling the program source code, so that
our compiler can analyze it and insert the necessary instructions for accessing the metadata and
performing memory safety checks.

2.3.2  Non-goals. While our proposed tool handles programs written in any language that is
translated to ptx (e.g., CUDA, OpenCL, or OpenACC), we only focus on instrumenting device-side
code (thus memory safety errors in the host-side code that runs on the CPU are not reported).
Existing CPU tools can be used to handle host-side code [Nethercote and Seward 2007; Serebryany
et al. 2012]. Additionally, certain types of memory safety violations, such as uninitialized reads and
typecasting between incompatible types, are not covered by our current prototype. Finally, we do
not consider synchronization or concurrency bugs, such as race conditions, in this paper as other
tools can be used to address them [Kamath and Basu 2021; Peng et al. 2018; Wu et al. 2020].

3 OUR PROPOSED TOOL: CUCATCH

Ensuring memory safety in conventional programs is a two-pronged approach. First, we need a
suitable technology to instrument and verify memory addresses accessed by a program. Second,
we need a suitable algorithm to detect memory safety violations. Unfortunately, existing memory
safety tools on GPUs suffer in their choice of either the memory safety algorithm or the code
instrumentation technology. For example, GMOD [Di et al. 2021, 2018] and cIARMOR [Erb et al.
2017; Erb and Greathouse 2018] use a low overhead compile-time approach to instrument memory
accesses but use a low-coverage memory safety algorithm (i.e., canaries). Similarly, NVIDIA’s
Compute Sanitizer [NVIDIA 2022a] relies on tripwires, but uses dynamic binary instrumentation
to instrument memory accesses, which incurs high performance overheads. Ideally, we desire a
code instrumentation technology with low performance overheads and a high-performing scalable
memory safety algorithm with high error detection coverage. We propose cuCatch, a compile-time
memory safety tool that uses a novel memory safety algorithm called shadow tagged base and
bounds (Shadow TBB) for providing high error detection coverage.
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3.1 Overview

Figure 3d provides an overview of our proposed algorithm, Shadow TBB. The key idea is to store
the necessary metadata for performing memory safety checks in a disjoint structure called the Base
and Size Table (BST). A new BST entry is assigned for each new memory allocation to store the
starting address of the allocation, the allocation size, and a random tag. The starting address and
size entries in the BST are both self-explanatory, while the tag is a random value assigned to each
new allocation to detect temporal memory safety violations. Given any arbitrary pointer, we need
to identify the BST entry that belongs to the allocation. If the BST-entry index can fit in the upper
pointer bits, it will be directly embedded in the pointer. Otherwise, we establish the connection
between pointers and their corresponding BST entry by using a shadow map. The shadow map is a
page-table like data structure that stores an N-bit BST-entry index for each M-byte virtual memory
region. To retrieve the BST-entry index of a given pointer, we use the pointer value to index into a
two-level shadow map (see Figure 3d).

3.2 Allocation Life-cycle

3.2.1 Allocation Creation. When a new allocation is created (e.g., by calling a memory management
API such as cudaMalloc), cuCatch stores the allocation base address and size in a new BST entry
and assigns a random non-zero 4-bit value for the tag. Depending on the number of unused upper
pointer bits, x, we subdivide the x-bit pointer tag space as follows:*{0} is reserved for host-side
allocations, [1 : 15] is used for traversing the shadow map, and [16 : (2* — 1)] is used to directly
index the BST. As a result, for the first (2* — 16) allocations of the program, the BST-entry index is
directly stored in the upper pointer bits, allowing for fast retrieval of the allocation metadata. When
the number of allocations exceeds (2% — 16), cuCatch first stores the 4-bit random tag (i.e., [1 : 15])
into the upper pointer bits and then stores the full 32-bit BST-entry index inside all the shadow
map entries that belong to this allocation. For example, assuming a shadow map that maintains
32-bit integers per each 32-byte virtual memory region, a 512-byte allocation will use % =16
shadow map entries where all entries hold the same 32-bit BST-entry index.

3.22 Pointer Load. During program execution, pointers can be loaded from memory and subse-
quently used as addresses for memory instructions. Upon loading a pointer from memory, cuCatch
retrieves the metadata associated with the pointer by either (1) reading the upper bits of the
pointer to determine the BST-entry index (i.e., when the upper pointer bits hold a value in the
[16 : (2° — 1)] range) or (2) using the pointer value to index into the shadow map to retrieve the
BST-entry index (i.e., when the upper pointer bits hold a value in the [1 : 15] range). The BST-entry
index is then used to consult the BST to retrieve the base, size, and tag information associated with
the pointer. This metadata is then stored in registers and propagated to all memory instructions
that use this pointer as an operand. In doing so, cuCatch effectively constructs a fat pointer that
holds all the memory safety information without changing the memory layout [Watson et al. 2015]
or application binary interface [Nagarakatte et al. 2009].

3.2.3  Pointer Usage. When a pointer is used as the address operand for a memory instruction, cu-
Catch inserts a memory safety check before the actual memory access. The memory safety check
uses the resulting pointer value (and tag) of the memory instruction and the metadata information
(which was previously fetched from the BST) to determine whether the memory access is legal
or not. cuCatch flags an exception if (1) the memory access is not within the legitimate allocation
bounds or (2) there is a temporal tag mismatch.

2The unused upper pointer bits depend on the host CPU architecture and page size used. They typically range from 7 to 16
bits. In our current prototype, we assume x = 8 bits.
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3.24 Allocation Deletion. When an allocation is deleted by invoking a memory management
API call such as cudaFree, cuCatch sets the corresponding tag in the BST entry to zero such
that subsequent accesses to the memory allocation via a dangling pointer will be detected. In
addition, cuCatch zeros the allocation’s shadow map entries so that they point to the illegal, zeroth
BST entry. New allocation requests always receive a fresh BST entry (and a random, non-zero 4-bit
tag if they are accessed through the shadow map). Unlike prior work [Lee et al. 2022], our BST size
is not constrained by the number of currently unused upper pointer bits.

3.3 Benefits of the Shadow TBB Approach over Prior Memory Safety Algorithms

Shadow TBB is a memory safety algorithm that tracks the precise bounds of each allocation. As such,
it offers higher error detection coverage than canaries (which is used by GMOD and clARMOR) and
tripwires (which is used by NVIDIA’s Compute Sanitizer). Shadow TBB draws inspiration from prior
base & bounds approaches (namely Softbound [Nagarakatte et al. 2009] and GPUShield [Lee et al.
2022]) and from memory tagging (namely ARM’s MTE [ARM 2019]). SoftBound is a compiler-based
memory safety tool for CPUs that stores the base and size information in a shadow memory table
that is indexed using the pointer’s location in memory (i.e., pointer’s address). On the other hand,
GPUShield is a hardware-assisted memory safety mechanism for GPUs. GPUShield uses a tagged
base & bounds (TBB) algorithm, which stores the base and size information in a disjoint table that
is indexed using a tag that is embedded in the upper bits of a pointer. Shadow TBB takes the best
features of SoftBound, GPUShield, and ARM’s MTE while addressing their limitations.

GPUShield limits the scalability of the memory safety algorithm due to the limited number of
unused bits in a pointer [Lee et al. 2022]. If a GPU program uses more than 2* memory allocations,
a TBB-only approach does not scale. Shadow TBB addresses this issue by using a traditional TBB
approach for the first (2¥ — 16) device-side allocations then falls back to a shadow map approach
for covering the remaining allocations, including managed (i.e., unified) memory.

SoftBound’s shadow metadata table, which is indexed using the pointer’s address, complicates
the metadata maintenance [Nagarakatte et al. 2009]. The compiler must copy the base and bounds
information in memory when a pointer is copied from one place to another (e.g., copying an array of
pointers using memcpy). If the compiler does not intercept a single pointer-copying site, SoftBound’s
shadow metadata table will become incomplete (i.e., the copied pointer will have no associated
metadata when it is used later to access memory). Incomplete shadow metadata tables lead to false
alarms, which negatively affect the usability of a debugging tool. This scenario is relevant to GPU
applications because host-side code and opaque third-party libraries such as cuFFT and cuDNN,
can copy around memory chunks, including pointers. Shadow TBB avoids these challenges by
indexing the shadow map using the pointer value. As a result, no special treatment is needed for
pointer copying as pointer location is irrelevant to the metadata indexing. Further, this design
choice better serves the debugging goals of cuCatch, in which there are no active attackers who try
to force out-of-bounds pointers to escape to memory before loading them in a different context.

4 IMPLEMENTATION

cuCatch is implemented in a recent fork of a production CUDA toolkit. This section describes
our changes to the CUDA driver and the production GPU-compute backend compiler. As Figure 4
illustrates, compilation begins with a high-level input specification of a CUDA program. A front-
end compiler lowers the program’s specification to an intermediate representation called PTX
(parallel thread execution). We modified the backend ptxas compiler to generate an instrumented
application, which relies on a modified CUDA runtime. We first describe our compiler-based
analyses, instrumentation, and optimizations. We then discuss the role of the runtime, which is
responsible for maintaining the metadata structures that the instrumented code consults.
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4.1 Compiler Instrumentation

Compiler instrumentation is a two-step process. In the analysis step, which we call base pointer
analysis, we slice backwards from memory instructions through pointer arithmetic to try to identify
the minimal set of pointers from which all other pointers are derived. In the transformation step, we
insert code that fetches the metadata for each identified root pointer. For global memory allocations
(also referred to as buffers), this step involves accessing the base, bounds, and tag information stored
in the BST populated by the driver. For shared and local memory buffers, the compiler fetches array
bounds information from the symbol table populated by the front-end compiler. Finally, we insert
memory safety checks that use this metadata information to ensure spatial and temporal safety
before each memory access in the program. We describe these steps below.

4.1.1 Base Pointer Analysis. To ensure that we fetch metadata for a buffer only once, and we do
not use an out-of-bounds address to fetch metadata, we perform base pointer analysis, a dataflow
analysis inspired by the well-known reaching definitions analysis [Aho et al. 2007] that computes
the reaching base pointers for each memory access.

Definition: A base pointer definition “S: p(64b) = ...” at a program point u reaches a program

point v if there is some path from u to v along which there is no destructive redefinition of p.

We define a destructive redefinition as a definition of p such that p now potentially points to a
new object in memory. Examples of destructive redefinitions include loads from memory, function
calls, and arithmetic instructions with multiple reaching base pointers. As with reaching definitions,
base pointer analysis is an iterative, forward dataflow analysis that builds baseptrdef-use chains.
We show the dataflow equations for our base pointer analysis below.

GEN(BB) = Set of downward-exposed destructive pointer definitions in BB
KILL(BB) = Destructive redefinitions of pointers in IN(BB)

IN(BB) = Upepredecessors(BB) OUT(P)
OUT(BB) = (IN(BB) - KILL(BB)) U GEN(BB)

For the example in Figure 5, our base pointer analysis correctly identifies arr1 and arr2 as the
reaching base pointers for memory access S1 in BB3. On the other hand, it identifies obj3+offset
as the base pointer that reaches S2 as the device-side compiler cannot analyze host-side code that
calls the kernel. Furthermore, the compiler cannot analyze function foo() and identifies its return
value p as the reaching base pointer for S3, which may not be true if p was the result of pointer
arithmetic. While identification of the true base pointer is useful for efficiency and coverage, failure
to identify the base pointer does not always preclude identification of memory safety errors, as we
discuss in Section 7. After our analysis has identified the base pointers, cuCatch’s compiler pass
performs code instrumentation.

4.1.2 Instrumentation. Table 1 shows our additions to the IR to support memory safety instru-
mentation. Since these instructions are not natively supported by the GPU hardware, our compiler
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BBO:
READMETADATA metadata_arrl =
READMETADATA metadata_arr2 =
READMETADATA metadata_arr3 =
p = foo()
READMETADATA metadata_p = [p]

Kernel(int8 *arrl, int8 *arr2, int8 *arr3)

p = foo(); \

if (condition) { BB1: a =arrl + 10 BB2: a =arr2 + 20
a = arrl + 10; metadata_a = metadata_arrl metadata_a = metadata_arr2
} else {
a = arr2 + 20; \/
}
print a[tid] + arr3[tid] + *p; BB3:
} a’ = a+ tid
SAFETYCHECK addrl = metadata_a, [a’]
Main() S1: LDG RO = [addri]
arr3' = arr3 + tid
Kernel<<<...>>>(objl, obj2, obj3+offset); SAFETYCHECK addr2 = metadata_arr3, [arr3’]

S2: LDG R1 = [addr2]
SAFETYCHECK addr3 = metadata_p, [p]
S3: LD R2 = [addr3]
result = RO + R1 + R2
print(result)

Fig. 5. Example showing the additional intermediate representation (IR) instrumentation added by cuCatch.

Table 1. The new IR instructions used by cuCatch.

Instruction ‘ Description

READMETADATA metadata = [base] Returns base and bounds.

OOBCHECK base, bounds, [addr] Checks if address lies between base and base+bounds.

TAGCHECK newAddr = base, metadata, [addr] Performs tag read & check for temporal safety & returns untagged address.
SAFETYCHECK newAddr = base, metadata, [addr] | Performs the operations of both OOBCHECK and TAGCHECK.

MASK newAddr = [addr] Returns an untagged address.

emulates the new instructions. The code that our compiler emits to emulate these high-level instruc-
tions contains conditional control flow instructions, which can potentially degrade performance, as
will be studied in Section 6.2.4.

The goal of the instrumentation is to convert base pointers into fat pointers which we propagate
through the kernel. For each identified base pointer, the instrumentation pass inserts READMETADATA
instructions that return pointer metadata from the BST. Further, the pass inserts SAFETYCHECK
instructions that use the metadata to flag memory safety violations. Figure 5 shows that the pass
inserts a safety check instruction before each memory access to check whether the supplied address
lies within the bounds of the corresponding array (spatial safety), and also ensures that the tag
matches (temporal safety) before masking off the tag bits and returning the original address. If the
safety check instruction identifies an out-of-bounds access or a use-after-free, it generates an error
and program execution ends.

p = . p = p=.
while(condition) while(condition) READMETADATA metadata = [p]
{ while(condition)
LDG[p] READMETADATA metadata = [p]
p=p+k SAFETYCHECK addr = metadata, [p] SAFETYCHECK addr = metadata, [p]
} LDG[addr] LDG[addr]
p=p+k p=p+k
} }
(a) Original program. (b) Naive instrumentation. (c) cuCatch instrumentation.

Fig. 6. cuCatch’s base pointer analysis removes redundant metadata fetch instructions.
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Figure 6a shows a simple while loop that reads elements from an array. Figure 6b shows a naively
instrumented program with metadata reads and safety check instructions inserted before each
memory access. This version of the instrumented program suffers from efficiency and correctness
issues. First, the metadata read within the loop is redundant because the metadata information for
a given buffer remains constant for the entire duration of the program. Second, if pointer p goes
out of bounds of the current buffer and instead points to a different, valid buffer, this version will
fail to identify the overflow between buffers. Figure 6¢ shows that as a consequence of our base
pointer analysis, cuCatch only inserts metadata fetch instructions once for the base pointer and
reuses the metadata whenever an instruction accesses the same buffer. This approach leads to both
error detection and performance improvements over the naive solution.

4.2 Shared Memory Protection

Our prototype uses neither a BST nor shadow memory for shared memory addresses but instead
relies heavily on static analysis. In most kernels the compiler can effectively infer the space of shared
memory operations, and furthermore, it can infer shared memory base pointers. CUDA supports
two types of shared memory allocations: static and dynamic [Harris 2013]. Static arrays are declared
in kernel code, and the front-end compiler passes the size information to the backend compiler.
However, dynamic arrays are declared in host code and are coalesced into a single buffer allocated
after static arrays. We discuss the error detection consequences of this behavior in Section 5.2.
As shared memory cannot be deallocated during kernel execution, we do not use tags to catch
temporal safety violations. Hence, we use a bounds check instruction (OOBCHECK) that only checks
if the address lies within the allocation’s base and bounds without checking the tag or masking off
any bits from the address. We still use the base pointer analysis described in Section 4.1.1 to identify
reaching base pointers. Furthermore, because there is no BST and the metadata (base and bounds)
is statically known, we do not insert a metadata read instruction for shared memory accesses. This
makes shared memory error checking much cheaper than global memory error checking, both in
terms of register usage and memory accesses.

4.3 Local Memory Protection

Like cuCatch’s global memory support, we record stack allocations in a BST and tag pointers (i.e.,
store the BST-entry index in the pointer’s upper bits) to local memory. However, the thread-private
nature of local memory (e.g., two threads that load from the address 0xffffa@ touch different
regions in the generic address space) along with its limited address space warrants a customized
BST. Instead of storing a monolithic BST to record all local memory allocations, cuCatch maintains
a per-thread 31-entry BST in local memory. CUDA’s current specification allows for a per-thread
16 MB stack, which means an address in local memory can be at most 24-bits, leaving 8 bits of
tagging space that we partition into a 5-bit local index that serves as a reference into the per-thread
BST, and a 3-bit local “tag” that we use to identify temporal safety issues on the stack.

In the header of each kernel or function with a stack frame, cuCatch emits code that initializes
a BST entry for the frame. The per-thread BST itself is implemented as a stack. When a function
with a frame executes, our emitted code pushes details of the stack frame (i.e., its base, bounds, and
a random 3-bit tag) onto the BST, and when the frame unwinds, our emitted code pops the BST
entry. We pack the upper eight bits of the frame’s stack pointer with the BST reference and the
random tag. Our support for alloca is similar, with the exception that unwinding the frame can
pop multiple BST entries as multiple alloca buffers can coexist in a single stack frame.

Other than the differences specified above, the general approach between our local memory and
global memory support is similar: memory safety checking unpacks the BST reference and the tag
stored in the pointer and then references the BST entry to compare the tags and ensure that the
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reference is in bounds. A 3-bit temporal safety tag allows us to catch temporal safety issues, on a

per-thread basis, with a probability of 1 — (2%) = % However, if we consider the SIMT nature of

most CUDA programs, the probability that we identify temporal issues can be much higher. With a
per-thread random tag we can model the probability of catching a temporal safety violation on the
2%)11, where n is the number of active threads in a warp and is often 32.

If pushing a frame’s BST entry would exceed the space the driver reserved for storing the thread-
local BST, cuCatch will not tag the stack pointer. Our prototype treats untagged local memory
pointers specially and reverts to the CUDA compiler’s current —sp-bounds-check functionality,
which simply ensures that stack pointers do not overrun their allocated space. These protections,
combined with the fact that deep call graphs are extremely uncommon in CUDA applications, limit
the risk of stack overflows. In addition to a limited BST size, the backend compiler in which cuCatch
operates does not have visibility into the contents of a frame, so our prototype cannot detect
intra-frame overruns; but this is a technicality of our prototype and not a flaw in the algorithm.

stackaspzl—(

4.4 Handling Generic Pointers

When the compiler cannot infer the space to which an address points, it uses generic memory
operations, as explained in Section 2.1.2. We protect generic memory instructions by emitting code
that first disambiguates the memory space (using the CUDA functions __isShared(), __isLocal(),
and __isGlobal()) before branching to code that appropriately unpacks the generic address’s tag
and implements the protection mechanism for the associated memory space.

Generic addresses also require cuCatch to instrument conversions between memory spaces.
When a local address is converted to a generic address, via __cvta_local_to_generic(), cuCatch
emits code that transfers the local address’s 8-bit tag to the resultant generic address’s tag space.
Conversions from a global address to a generic address require no special treatment.

4.5 Error Attribution

cuCatch provides a compile-time knob for controlling the behavior of memory safety exceptions.
In one mode, cuCatch simply executes a trap instruction that terminates the program. This mode
is useful for allowing cuCatch to run in the context of a debugger like cuda-gdb. Another mode
provides standalone error reporting: Before forcing application shutdown, cuCatch displays the
failure reason, including the offending memory address, the allowable boundaries of the allocation,
and PTX line information. The latter mode incurs additional overheads due to increased register
usage which can reduce a kernel’s effective parallelism.

4.6 Optimizations

In Section 4.1, we described the problem of redundant metadata reads. We now detail cases where
the bounds check may also be redundant.

4.6.1 Coalesce Bounds Checks to the Same Memory Allocation within Straight-line Code. Figure 7a
shows straight-line code with multiple accesses to the same memory allocation (in this case, a
shared memory buffer, arr). The naive instrumentation inserts a bounds check instruction before
every such memory access to arr. We propose an optimization that walks over all accesses to
the same buffer and identifies the minimum and maximum address accessed. Next, we check if
the minimum and maximum addresses both lie within the bounds of arr before executing any
of the memory reads. This optimization has two benefits. First, it reduces the number of bounds
checks thereby reducing the total computations for shared memory accesses and the total number
of memory accesses in the case of global memory accesses. Second, because we no longer insert
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LDS [arr]

LDS [arr + 10]
LDS [arr + 2]
LDS [arr + 30]

base = arr

bounds = arr->size

00BCHECK base, bounds, [arr] // min
LDS [arr]

00BCHECK base, bounds, [arr + 10]

LDS [arr + 10]

00BCHECK base, bounds, [arr + 2]

LDS [arr + 2]

O0OBCHECK base, bounds, [arr + 30] // max
LDS [arr + 30]

base = arr

bounds = arr->size
// min
// max

LDS [arr]

LDS [arr + 10]

LDS [arr + 2]

LDS [arr + 30]

(a) Bounds check for min and
max access to array.

for (int I=0; I<=N; I=1+1)

LDS result = [arr]
STS [arr] = ..

}

base = arr

bounds = arr->size

for (int T =0; T <=N; I =1+1)

{
// address is loop invariant
// but memory accesses are not
OOBCHECK base, bounds, [arr]
LDS result = [arr]
STS [arr] = ..

base = arr
bounds = arr->size

// check once
for (int I =0; I <=N; I =1+1)

LDS result = [arr]

STS [arr] = ..
}

(b) Hoist loop invariant bounds
checks.

for (int I =0; I <=N; I =1+ 1)

LDS [arr]
arr += inc

base = arr
bounds = arr->size
for (int I =0; T <=N; I =1+ 1)

// bounds check arr, arr+inc, arr+2*inc.
OOBCHECK base, bounds, [arr]

LDS [arr]

arr += inc

base = arr
bounds = arr->size
// bounds check at first and last address

for (int I =0; I <=N; I =1+1)
LDS [arr]

arr += inc

}

(c) Coalesce bounds checks to
same array within a loop.

Fig. 7. cuCatch’s optimizations for removing redundant bounds checks. The top row shows the original code
followed by the naive and optimized cuCatch instrumentation in the middle and bottom rows, respectively.

conditional branches before each LDS instruction, the instruction scheduler is better able to reorder
and group memory access instructions for higher instruction level parallelism.

4.6.2 Hoist Loop Invariant Bounds Checks. Figure 7b shows a for loop which accesses the same
element of buffer arr in every iteration. However, since there is also a write to the same element,
the memory accesses are not loop invariant and cannot be hoisted out of the loop. The bounds
check instruction on the other hand is loop invariant. Once we know that the address is within
boundes, it will remain within bounds for every subsequent iteration. Hence, it is legal to hoist
the bounds check instruction out of the loop using loop invariant code motion [Aho et al. 2007].
Once again, this approach reduces the number of computations, memory accesses and improves
instruction scheduling, particularly if the loop is unrolled.

4.6.3 Coalesce Bounds Checks to the Same Array across Loop Iterations. Figure 7c shows a similar
for loop, but this time the LDS strides over multiple elements of the array. Hence, the bounds check
is no longer loop invariant because while arr+inc may be within bounds, arr+2*inc may be out
of bounds. Instead, we identify the minimum and maximum addresses accessed across all iterations
of the loop and hoist them out of the loop body to ensure all accessed elements lie within bounds
before executing the loop. Note that we lose debugging precision when a coalesced bounds check
instruction fails because it might refer to any one of multiple memory accesses.

4.6.4 Temporal Safety and Optimizations. Figure 7 summarizes how we reduce redundant bounds
checks for shared memory accesses. These optimizations also apply to global memory accesses,
with a few modifications. Since global memory buffers may be freed at any time during kernel
execution, eagerly performing coalesced temporal safety checks may cause us to miss use-after-free
errors later in the program. To ensure cuCatch still detects temporal safety errors, we only hoist or
eliminate redundant bounds check instructions and replace deleted 00BCHECKs with TAGCHECKs. We
further optimize tag checks by only performing a tag check before the final access to a global object
to assert that all previous accesses were safe, which can eventually catch use-after-free errors.
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4.7 Runtime Support

The CUDA driver provides support for managing the CUDA runtime APIs, which include all the
functions for memory management in CUDA except for thread-level stack management, which the
compiler orchestrates. Before a kernel launches, the driver acquires the device resources necessary
for the kernel’s entire lifetime, including registers, requested stack space, and shared memory.

For this work we modified the CUDA driver by interposing the memory management routines
with memory safety functionality. Broadly speaking, we classify memory management routines
into two main categories: device memory routines (e.g., cudaMalloc and cudaFree), which manage
memory that is only accessible on the GPU,* and unified memory routines (e.g., cudaMallocManaged
and cudaHostAlloc), which manage memory that is accessible from both the GPU and the CPU.
We make this distinction because cuCatch cannot tag pointers that reference unified memory,
otherwise the pointers would be invalid on architectures that do not support “Top Byte Ignore”
(TBI)* including the current generation of Intel CPUs.

4.7.1 Device Memory. The cuCatch driver intercepts device memory routines, and after allocating
the memory in device RAM, tags the resultant pointer and modifies the BST according to the
algorithm presented in Section 3. The BST is allocated per CUDA context, and by default can
accommodate 22° live allocations. Whenever the cuCatch driver modifies the BST, it instructs the
GPU to flush all caches before returning control to the user’s code. When the number of allocations
exceeds (2* — 16), cuCatch uses a random 4-bit value to decorate the upper pointer bits and stores
the allocation’s BST-entry index in the shadow map. The shadow map is currently implemented as
a two-level lookup map, inspired by Valgrind [Nethercote and Seward 2007]. Every time device
memory is allocated or freed, cuCatch must modify the BST, which incurs a fixed one-time cost.

4.7.2  Unified Memory. For unified memory allocations, cuCatch reserves a BST entry and populates
it with the allocation’s details. However, since cuCatch cannot tag the pointer, it uses the shadow
map approach described in Section 3.2.1 to store the allocation’s BST-entry index without the
random 4-bit temporal safety tag. Frees to unified memory allocations modify the BST and the
shadow map appropriately. The cuCatch driver also interposes the implicit allocations for global
variables, which can map to either device or unified memory, depending on programmer annotations.
In our current implementation, every time unified memory objects are allocated or freed, cuCatch
incurs an overhead proportional to the size of the allocation to modify the shadow map.

4.7.3  Shared and Local Memory. Before the kernel launches, the cuCatch driver populates the extent
of shared memory in a constant bank that our compiler-generated instrumentation code consults.
We also reserve thread-private local memory that cuCatch uses to manage the local-memory BST.

5 ERROR DETECTION ANALYSIS

We now analyze cuCatch error detection coverage and compare it to other GPU tools.

5.1 Memory Safety Benchmarks

A GPU program under-test could have one or more memory safety errors. To quantify the error
detection coverage of cuCatch, we created a CUDA-based benchmark suite that covers different
types of memory safety vulnerabilities (Figure 2). Specifically, our suite includes 56 tests covering
fine- and coarse-grained spatial and temporal memory safety violations that can occur in the global,
local, and shared address spaces of a GPU.

30ur prototype does not yet support the in-kernel memory management APIs (e.g., malloc and free) [NVIDIA 2023a]
because they are rarely used in practice.
4TBI is a hardware feature introduced with ARMv8 that ignores the top byte of a pointer when accessing memory.
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Table 2. Error detection benchmarks summary.

Number of detected tests per tool

Benchmark Type  Total Tests Baseline Compute Sanitizer GMOD* GPUShield* cuCatch
[NVIDIA 2022a] [Diet al. 2018] [Lee et al. 2022]
Global memory OOB 8 0 4 4 8 8
Local memory OOB 16 0 4 0 12 12
Shared memory OOB 12 0 4 0 0 10
Intra-allocation OOB 8 0 0 0 0 0
Use-after-free 4 0 2 0 0 2
Use-after-scope 4 0 2 0 0 4
Invalid free 2 2 2 2 2 2
Double free 2 2 2 2 2 2
Detection Rate 56 7.1% 35.7% 14.2% 42.8% 71.4%

" Results for GMOD and GPUShield are estimated based on each paper’s description.

Table 2 summarizes the results of running our vulnerability suite on different GPU-based memory
safety tools using the experimental setup from Section 6.1. The “Baseline” column corresponds to
running the vanilla tests on a commodity GPU whereas the “Compute Sanitizer” column corresponds
to running the tests with NVIDIA’s Compute Sanitizer memcheck tool. As we could not run the
tests on an actual system with the necessary modifications for GMOD [Di et al. 2021, 2018]
and GPUShield [Lee et al. 2022], we estimated their error detection results as per each paper’s
description.” The final column shows the results of compiling and running the tests with our cuCatch
toolchain. Our quantitative results show that cuCatch offers the highest error detection coverage.

5.2 Out-of-bounds Accesses Analysis

5.2.1 Global Memory Coverage. To analyze out-of-bounds (OOB) accesses on global memory, we
use a total of eight tests. Compute Sanitizer and GMOD failed to detect four tests that correspond to
non-adjacent buffer over-read/write because both tools implement the tripwires algorithm, which
can only catch linear overruns. On the other hand, all tests were correctly reported by GPUShield
and cuCatch as both techniques track the exact bounds of each allocation. Thus illegal accesses
from one valid allocation to another non-adjacent allocation are detected.

5.2.2  Local and Shared Memory Coverage. To analyze OOB accesses on local and shared memory,
we run 16 and 12 tests, respectively, as both memory spaces have multiple subcategories as shown
in Figure 2a. Compute Sanitizer only captures errors that go beyond the stack (or shared) memory
bounds. It misses the tests where overruns occur within the same stack frame, across different
frames, and between multiple (statically- or dynamically-allocated) shared buffers. As GMOD only
considers global memory, it misses all shared and local memory tests. Further, the GPUShield paper
only describes techniques for guarding global and local memory without explaining how shared
memory buffers are treated. On the other hand, cuCatch provides significantly higher memory
safety coverage by successfully catching 12 and 10 OOB errors on local and shared memory,
respectively. cuCatch failed to catch six tests which we describe next.

5.2.3 OOB Errors that cuCatch Misses. cuCatch failed to detect (1) four local memory tests that
correspond to adjacent and non-adjacent OOB read/write errors within the same frame, and (2)
two shared memory tests that allocate multiple shared buffers from the dynamically-allocated
pool. In the above cases, the compiler backend cannot infer the exact bounds of each individual
buffer as (1) the precise bounds information of statically-allocated local buffers is unavailable in the

SGPUShield requires hardware changes unavailable on today’s GPUs and GMOD source code fails to compile with our tests.
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compiler backend, and (2) dynamically-allocated shared buffers are reserved as one region at kernel
launch time. cuCatch opts to provide coarse-grained memory safety checks to ensure that the OOB
accesses do not affect buffers in other memory spaces. Supporting fine-grained bounds checking
for dynamically-allocated shared buffers can be achieved with user-annotation. On the other hand,
fine-grained bounds checking for statically-allocated local buffers can be achieved by passing more
metadata from the compiler front-end to the backend. We leave these extensions to future work.

Finally, all tools failed to detect intra-allocation OOB errors that occur between two fields within
the same structure. Those tests go undetected as current tools only track the bounds of the entire
allocation (e.g., struct) and lack visibility into the allocation’s underlying structure.

5.3 Temporal Safety Analysis

5.3.1 Global Memory Coverage. We test immediate and delayed use-after-free (UAF) errors affecting
both device and unified memory. When a memory region is immediately accessed with a dangling
pointer after being freed (and before being assigned to a new allocation), cuCatch successfully
reports a temporal safety error as the BST entry of the freed region is set to a unique value.

On the other hand, the memory allocator can reuse the recently freed memory region to serve a
new allocation request (and before the dangling pointer is used to access the region); we refer to
this case as a delayed UAF,® which results in two different scenarios. First, if the freed region is
assigned a tag in the [16 : (2¥ — 1)] range, the violation is deterministically detected by cuCatch
due to a mismatch between the BST-entry index of the dangling pointer, which is stored in its
upper bits, and the BST-entry index of the new allocation.” Second, if the freed region is assigned
a tag in the [1 : 15] range (with a shadow map entry), the violation is probabilistically detected
because while both the dangling pointer and the new allocation retrieve the same value from the
shadow map, they might have been assigned different random 4-bit tags. Compute Sanitizer only
detects the immediate UAF errors. We exclude GMOD and GPUShield from our temporal safety
analysis as they only focus on spatial memory safety.

5.3.2  Local Memory Coverage. Similar to UAF errors on device and unified memory, temporal safety
violations might occur on the stack. We refer to this case as use-after-scope (UAS), which occurs due
to accessing a local buffer after its stack frame is destroyed (i.e., after the corresponding function
returns). As explained in Section 4.3, cuCatch’s per-thread BSTs allow us to deterministically detect
immediate UAS errors and probabilistically capture delayed UAS errors. Compute Sanitizer only
detects the immediate UAS violations.

5.3.3 Temporal Safety Errors that cuCatch Misses. To summarize, cuCatch deterministically detects
all immediate temporal safety errors. On the other hand, cuCatch’s ability to detect delayed temporal
safety errors comes from the upper pointer bits. As the upper pointer bits store the non-zero 4-bit
random tag (i.e., shadow map allocations), the error detection is probabilistic. If the upper pointer
bits are not tagged (i.e., unified memory without TBI), the delayed temporal error is not detected.

5.4 Double- and Invalid-free Analysis

Our prototype does not explicitly track allocated and deleted pointers. We rely on the underlying
memory allocator (e.g., the GPU allocator that implements cudaMalloc) for doing so. Upon passing
an invalid (i.e., non-base) pointer to the deallocation function or freeing the same allocation twice,
the memory allocator returns a runtime exception, which our tool forwards to the user. The same
errors are observed while experimenting with the baseline and NVIDIA’s Compute Sanitizer.

®Delayed UAF is also known as use-after-realloc (UAR).
7If the new allocation is assigned the same BST-entry index as the freed object, the error detection becomes probabilistic.
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6 PERFORMANCE EVALUATION

This section analyzes the performance and memory overheads of cuCatch on GPU applications.
We first describe our evaluation methodology and workloads and then discuss the runtime results.

6.1 Evaluation Methodology

We evaluate cuCatch using a recent build of the CUDA toolkit, where we replace both the backend
ptxas compiler with our cuCatch-enabled version, and the CUDA runtime library with a specialized
version that provides the runtime support discussed in Section 4.7.

We use 87 standalone CUDA kernels from various workload segments such as scientific computing
(e.g., namd, amber18, AMG, FUN3D, Laghos, lammps, Relion), commercial (e.g., 5G decoding), and
visualization (e.g., Optix [Parker et al. 2010]). We also evaluate PolyBench-ACC [Grauer-Gray et al.
2012] and most of the CUDA Samples [NVIDIA 2022d].3 Of the total 176 workloads evaluated, only
five have 240 (which is 2* — 16 for x = 8) or more live memory allocations.

We use an NVIDIA GeForce RTX 2080Ti GPU, locked to base clock settings of 1710 MHz for
the GPU core and production DRAM frequency settings. The host system is a 12-core Intel Core
i7 — 5930K CPU. For the CUDA Samples and PolyBench-ACC, we compare wall clock time from
the built-in performance reporting of each application. For the standalone kernels, we use nsight-
compute [NVIDIA 2023b] to capture wall clock time for the GPU-only portion of the CUDA kernels,
not including kernel launch overheads. As such, these are worst-case results because we ignore
execution that can dilute the overheads in short-running kernels, such as initializing constant
banks and launching kernels. We do not include the performance overhead of intercepting memory
management routines and updating cuCatch’s data structures (e.g., BST or shadow map) as these
overheads are typically negligible compared to overall application execution time.

6.2 Evaluation Results

6.2.1 Runtime Overheads. Figure 8 summarizes the performance overheads of running our work-
loads with cuCatch’s compiler instrumentation and driver support while enabling our compile-time
optimizations (explained in Section 4.6). We instrument global, shared, and local memory accesses
in device-side GPU code. We do not instrument host-side CPU code, as stated in Section 2.3. The
workloads are ordered from left to right in increasing order of runtime overheads.

--cuCatch (Shadow TBB) cuCatch (Shadow BB only)

Normalized performance
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Fig. 8. Performance overheads of cuCatch with the shadow tagged base & bounds algorithm (Shadow TBB)
and a shadow base & bounds only variant (Shadow BB), in which all allocations traverse the shadow map.

Most of the evaluated workloads incur negligible overheads where the geometric mean of
deploying our tool is 1.19X (or 19%). To better understand the source of the overheads, we profiled

8We exclude tests that perform in-kernel malloc and CUDA Dynamic Parallelism as both features are not currently
supported by our cuCatch prototype. We also exclude samples that link in pre-compiled CUDA libraries as cuCatch does
not instrument binaries.
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the top five slowdowns (> 2X) using nsight-compute [NVIDIA 2023b]. Our analysis shows that
the reduction CUDA sample (#168 on the x-axis in Figure 8) suffers from memory latency stalls
resulting from the introduction of bounds check instructions within a loop. Similarly, app14 (#170)
and app23 (#172), from amber18, are also limited by memory access latency and register spills.
The amber18 kernels only show a 5% overhead when we limit instrumentation to global accesses.
app38 (#169) is a small FUN3D kernel that does not fully utilize the GPU. Hence, there is insufficient
warp-level parallelism to hide the latency of the additional instructions introduced by cuCatch.
When we instrument only global memory accesses, the overheads for app38 fall to 30%. Finally,
app58 (#171) is an RTM kernel that shows a significant reduction in warp occupancy and increase
in spills due to high register pressure even when we only instrument global memory accesses. On
the other hand, we notice an unexpected performance speedup over baseline for interval (#4)
because our instrumentation uses two additional registers than the baseline compilation, which
lowers occupancy and boosts performance over the baseline by about 5%. We also observe this
performance improvement when we force baseline compilation to use two extra registers.

6.2.2 Sensitivity Analysis. In addition to our main Shadow TBB configuration, we evaluated an
alternate configuration that forces all metadata fetch instructions to traverse the shadow map
by reducing the available upper pointer bits to zero. Doing so eliminates the benefits of directly
indexing the BST using the upper pointer bits. This approach, referred to as Shadow BB-only in
Figure 8, incurs a geometric mean of 1.25X (or 25%) runtime overheads with a maximum of 3.22x.

6.2.3 Memory Overheads. cuCatch has two sources of memory overheads: a compulsory memory
cost and a scalable one. The compulsory memory overhead comes from maintaining the BST (a
32 MB data structure with 220 x 32 B-aligned allocation metadata) and the first level of the shadow
map (a 128 MB array with 22* elements, where each element can hold a pointer to a second level
shadow map table). The scalable component comes from the second-level shadow map tables which
are allocated on demand (32-bit entry per each allocated 32 B memory region or 12.5%) when the
number of allocations exceeds the upper pointer bit capacity.

Normalized memory
bloat relative to baseline
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Baseline memory footprint per application (MB)

Fig. 9. Memory overheads of cuCatch (Shadow TBB) normalized to baseline execution.

Figure 9 shows the overall memory bloat of cuCatch relative to the baseline program memory
footprint. When the memory footprint of the workload is small (left-hand-side of the x-axis), the
memory overhead of cuCatch is comparatively large because of the compulsory cost described above.
On the other hand, cuCatch’s memory bloat drops significantly as the baseline memory footprint
increases. For example, the overall memory overheads are less than 20% for any realistically-sized
application. None of the evaluated workloads exceeds the 12 GB memory capacity of the GPU we
use. Even if a memory-bound application exceeds the GPU memory capacity with cuCatch, it can
still run without crashing if the metadata structures are allocated in “unified memory”, which is
GPU-accessible memory that migrates between the CPU and GPU. Experimenting with unified
memory-based metadata structures is part of ongoing work and beyond the scope of this paper.
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6.2.4  Occupancy and Divergence. Occupancy is a measure of active warps on a GPU and depends
on the per-thread resource (i.e., register and shared memory) consumption. In our study, we observe
a reduction in occupancy due to increase in register usage for 14 out of 176 kernels with slowdowns
in 11 of the 14 kernels. Furthermore, 23 of the kernels showed an increase in spills. On the other
hand, thread divergence occurs when threads within a warp execute different control flow paths at
a branch instruction, resulting in in serialized execution. While cuCatch introduces conditional
branch instructions, we found that the vast majority of the time, the branch conditions are warp
invariant because SIMT memory operations convergently access the same memory object.
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Fig. 10. cuCatch optimization effects. NVIDIA’s Compute Sanitizer memcheck tool.

6.2.5 cuCatch Optimizations. To quantify the impact of our proposed optimizations, Figure 10
shows a subset of the workloads where optimizations were most effective. For example, bounds
check optimizations improve app5’s performance by 80%. Since app5 has a large number of strided
shared memory accesses, removing bounds check instructions significantly reduces the total number
of instructions executed. This enables the compiler to freely issue memory accesses back-to-back
for higher instruction level parallelism. On average our optimizations have a 4% performance
improvement over the unoptimized version across all evaluated workloads.

6.2.6 Comparison with the State-of-the-art Error Detection Tool. Figure 11 shows the relative perfor-
mance between cuCatch and NVIDIA’s Compute Sanitizer memcheck tool. cuCatch is significantly
faster (63X on average) primarily due to technology differences between compiler instrumentation
and dynamic binary instrumentation [Villa et al. 2019]. Additionally, Compute Sanitizer detects
API and misaligned memory access errors which further adds to its overall slowdowns.

7 DISCUSSION

We now discuss cuCatch limitations and how we plan to address them.

Custom memory allocators. CUDA programmers tend to wrap device allocation APIs (e.g.,
cudaMalloc) with their own memory allocators for many reasons. Some of these reasons include
achieving consistent allocation time (as cudaMalloc timing varies even for the same allocation size)
and avoiding synchronizing all streams upon memory allocations. Using a custom allocator will
thwart our tool’s bounds checking as we will be unaware of the base addresses of internal allocations.
As many GPU libraries that use custom allocators rely on a well-defined interface for managing
memory (e.g., DeviceAllocate/DeviceFree in CUB [NVIDIA 2022b] and Thrust [NVIDIA 2022¢g]
and do_allocate/do_deallocate in the RAPIDS memory manager [NVIDIA 2022f]), one potential
solution is to capture the calls to the custom memory allocator APIs similarly to how we intercept
calls to the default CUDA memory allocator, and update our metadata structures accordingly.

Address translation services. Modern NVIDIA GPUs add support for a new feature called Address
Translation Service (ATS) [Sakharnykh 2019]. This feature allows the programmer to transparently
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transfer data between the CPU and GPU without using explicit APIs such as cudaMemcpy. For
example, a CUDA programmer can allocate a buffer in CPU memory using a call to the CPU-side
malloc and later pass this buffer as an argument to a GPU kernel. The underlying hardware will
then automatically migrate the referenced memory page from the CPU memory to GPU memory. In
order for cuCatch to detect memory safety errors in ATS-migrated buffers, we will need to intercept
calls to CPU-side allocators and include their bounds in a BST so we can verify the bounds of those
buffers when they are accessed from the GPU-side code. We leave this extension to future work.

Backend instrumentation. In this work, we opt to implement cuCatch as an extension to the
compiler backend. This provides multiple benefits. First, we can handle a variety of programming
languages that target NVIDIA GPUs, including CUDA, OpenACC, DirectX, and Vulkan. Second,
our tool takes advantage of the multiple optimization passes that run in the compiler backend.
Inserting our instrumentation code early in the compilation pipeline (e.g., compiler front-end) may
render many of the backend optimizations ineffective and degrade performance. On the other hand,
the main disadvantage of working in the backend is that some semantic front-end information is
lost (e.g., base pointer information and precise size information of statically-allocated local buffers).
Such high-level semantics could help cuCatch achieve higher error detection coverage for global
and local memory, as discussed in Section 5.2.3. One potential solution to address this problem is to
explicitly propagate additional metadata from the compiler front-end to our backend.

Base pointer analysis limitations. Our compile-time base pointer analysis might fail to identify the
true base address of an object if it comes across a destructive redefinition. Because our static analysis
is intraprocedural, function parameters and return values are treated as destructive redefinitions.If
the base pointer analysis fails to identify the true base pointer, traversing the shadow map might
lead to fetching the base and size of an unrelated object. The same issue might occur if a pointer
is stored to memory (after a pointer arithmetic operation, p=p+offset), and is then loaded from
memory (before a memory access operation, *p) because our analysis ends at a memory access
since this is a destructive redefinition. To address this limitation, cuCatch relies on the random 4-bit
tag to probabilistically catch such memory safety errors, as the 4-bit tag from the upper pointer bits
(e.g., *p) is unlikely to match the tag which is fetched from the BST entry pointed-to by p+offset.

Supporting off-by-one pointers. For an array A[N], the C standard allows the generation of
pointers to (1) any element within the array (i.e., AL®], A[1], ..., AIN-1])and (2) one element
past the end of the array (i.e., ALN]), which we refer to as an off-by-one pointer. Off-by-one pointers
are problematic for allocations that traverse the shadow map as the off-by-one pointer of an
allocation A might end-up pointing to the first shadow map entry of an adjacent allocation B,
leading to incorrect metadata retrieval. In order to smoothly support off-by-one pointers, cuCatch
adds four padding bytes for each memory allocation to force the creation of an additional shadow
map entry between adjacent objects. This way an off-by-one pointer that corresponds to allocation
A will always retrieve the BST-entry index of its own allocation when traversing the shadow map.

JIT-code and pre-compiled libraries. We note that since its inception, CUDA has featured just-
in-time compilation capabilities. By default, when a developer compiles an application, the compiler
generates a binary in which the program’s PTX representation is embedded. The CUDA driver can
just-in-time compile the program’s PTX to generate optimized machine code that runs on the target
device. We can leverage this feature to instrument any application distributed with embedded PTX.
However, some libraries do not contain PTX, but instead are comprised of executable machine
code. Therefore, a complete solution for handling all CUDA applications and libraries requires a
binary-instrumentation fallback to supplement a more efficient compiler-based instrumentation.
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Table 3. Comparison with prior memory safety works on CPUs and GPUs.

Proposal Platform Instrumentation Spatial‘ Tempora.l Metadata Memory Performance

Level ' Safety Safety ¥ Requirements Overhead Overhead

REST CPU Hardware =) =) 8-64B token per object o blocklisted memory o # of (dis)arm insns.

Califorms CPU ISA =} =} 1-7B per field o blocklisted memory o # of BLOC insns.
ARM MTE CPU ISA =} =} 4 bits per 16B region o prog. mem. footprint o # of tag (un)set ops
CHERI CPU ISA [ J O Ptr size is 2-4X o # of ptrs o # of ptr ops
CHERIvoke ~ CPU ISA O [ J Ptr size is 2-4X o # of ptrs o # of ptr ops
Intel MPX CPU ISA [ J O 2 words per ptr o # of ptrs o # of ptr derefs
CHEx86 CPU Hardware [ J =) 2 words per ptr o # of objects & ptrs o # of ptr derefs
No-FAT CPU ISA [ J =} 1KB per process o padding objects o # of ptr derefs
sizes table to the nearest size

AOS CPU ISA [ J =} 8B bounds per ptr o # of ptrs o # of ptr derefs
Valgrind CPU Binary =} O 1B per 8B region o prog. mem. footprint o # of ptr derefs
SoftBound CPU Compiler [ O 2 words per ptr oc # of ptrs o # of ptr derefs
Address Sanitizer CPU Compiler =} O 1B per 8B region o prog. mem. footprint o # of ptr derefs
GPU Shield GPU Hardware [ J O 2 words per object o # of objects o # of ptr derefs
Compute Sanitizer GPU Binary =} O 2 words per object o # of objects o # of ptr derefs
GMOD GPU Compiler =) O 8B canary per object oc blocklisted memory o # of ptr derefs
cIARMOR GPU Compiler =} O 8B canary per object o blocklisted memory o # of ptr derefs
cuCatch GPU Compiler [ J =} 32 bits per 32B region  « prog. mem. footprint o # of ptr derefs

" Hardware - hardware-only changes; Compiler - compiler-level changes; Binary - DBL; ISA - hardware and compiler changes.
" @ - Complete (Linear and non-linear overflows); @ - Linear only; O - No coverage.
§ @ - Complete; @ - Partial coverage; O - No coverage.

8 RELATED WORK

In this section, we review existing memory safety work on both CPUs and GPUs. Table 3 compares
the different proposals based on the target platform, the instrumentation technology (whether the
proposal is realized completely in software, requires hardware changes, or both), the error detection
coverage, the metadata storage overhead, and the main sources of memory and performance
overheads. We refrain from using absolute memory/performance numbers in the table as the
compared proposals were evaluated on different platforms using different workloads.

8.1 CPU Solutions

8.1.1 Hardware-assisted Techniques. There exists a rich literature on addressing the C and C++
memory unsafety problem on CPUs. Prior proposals adopted different memory safety algorithms
as discussed in Section 2.2.2. For example, REST [Sinha and Sethumadhavan 2018] and Cali-
forms [Sasaki et al. 2019] implemented tripwires or memory blocklisting. REST [Sinha and Sethu-
madhavan 2018] stored a predetermined 8-64 B random token in the memory to be invalidated and
detected illegal accesses to it by comparing cache lines with the token when they are fetched. To
achieve fine-grained spatial safety detection, Califorms [Sasaki et al. 2019] inserts smaller sized
tokens (1-7 B) between fields of the same allocation and changed how data is stored in cache lines
for inlining the metadata within the program data without causing severe memory fragmentation.
Memory tagging implementations include SPARC’s Application Data Integrity (ADI) [Oracle 2015]
which associates 4-bit tags with each 64B cache line and ARM’s Memory Tagging Extension
(MTE) [ARM 2019], which uses 4-bit tags per each 16 B of memory.

Finally, hardware-assisted proposals that adopt the base & bounds algorithm include CHERI [Wat-
son et al. 2015], which increases the pointer size to include the bounds information of the pointed-to
allocation, Intel’s MPX [Oleksenko et al. 2018] and CHEx86 [Sharifi and Venkat 2020], which store
the bounds information in page-table-like format that is indexed using the pointer location in mem-
ory, and No-FAT [Tarek Ibn Ziad et al. 2021], which implicitly derives the bounds information of an
allocation from its location in memory by taking advantage of binning memory allocators. There is
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also AOS [Kim et al. 2020], which uses the upper pointer bits to store a Pointer-Authentication-Code,
which acts as a key to a hashed metadata table that holds the allocation base and size. These propos-
als provide temporal safety by using virtual memory quarantining, randomization of tags/colors
(e.g., ARM’s MTE [ARM 2019]), or automatic garbage collectors (e.g., CHERIVoke [Xia et al. 2019]).

One common theme between the aforementioned techniques is that they all require special
hardware support to reduce the memory and runtime costs of memory safety. As a result, they
cannot be directly used on legacy/unmodified hardware.

8.1.2  Software Tools. Existing CPU-only memory safety solutions incur high memory and runtime
overheads. For example, Valgrind [Nethercote and Seward 2007] maintains a configurable number
of metadata bits per each program byte/word. This metadata is stored in a shadow memory and
is accessed upon each program load or store to verify whether the memory access is valid or
not. To maintain perfect compatibility with legacy binaries and hardware, Valgrind uses dynamic
binary instrumentation (DBI), which intercepts each program instruction before being executed on
hardware and inserts the tool-specific instructions before or after it. Unfortunately, DBI results in
significant (orders-of-magnitude) performance overheads.

Other CPU-based tools take advantage of compiler support for instrumenting programs to avoid
the high cost of DBI. For example, Google’s Address Sanitizer [Serebryany et al. 2012] uses shadow
memory to detect OOB errors, uninitialized reads, and certain temporal memory safety violations
in addition to SoftBound [Nagarakatte et al. 2009], which was discussed in Section 3.3.

8.2 GPU Solutions

8.2.1 Software Tools. Current GPUs have few protections against memory safety-based vulnera-
bilities. To detect memory safety errors on GPUs, NVIDIA’s Compute Sanitizer memcheck tool can
be used [NVIDIA 2022a]. Since Compute Sanitizer uses DBI, it incurs large performance overheads.
Other tools, such as clARMOR [Erb et al. 2017] and GMOD [Di et al. 2021, 2018], surround buffers
with an area of known values called canaries. They detect buffer overflows by periodically verifying
that the canary value has not been altered. Unfortunately, canaries cannot detect OOB reads by
construction. Moreover, canaries are ineffective against non-adjacent OOB violations.

8.2.2 Hardware-assisted Techniques. GPUShield [Lee et al. 2022] is a recent GPU-focused memory
safety solution that proposes hardware modifications to catch spatial safety violations. As discussed
in Section 3.3, GPUShield solely relies on upper pointer bits to store the bounds table entry, which
precludes protecting an arbitrarily large number of allocations, especially on emerging 57-bit
systems. Further, the design choice of creating a per-kernel bounds table limits GPUShield’s ability
to capture temporal safety violations as it lacks the whole-execution metadata view.

9 CONCLUSION

With the rapidly-growing adoption of GPUs in various applications, ranging from artificial intelli-
gence and medical imaging to physics simulation and blockchain, it is crucial to develop efficient
tools that help GPU developers uncover various errors in their applications. This paper presents cu-
Catch, a software-based tool for efficiently detecting memory safety errors in CUDA applications.
We implemented cuCatch as an extension to NVIDIA’s backend compiler and driver and showed
that it incurs low runtime overheads compared to state-of-the-art debugging tools. Moreover, we
tested the error detection coverage of cuCatch using multiple benchmarks with memory safety
errors. We show that cuCatch provides the highest error detection coverage compared to state-of-
the-art memory safety tools for GPUs due to its novel underlying memory safety algorithm and
optimized compiler implementation. The low runtime overheads and high error detection coverage
allow cuCatch to stand as an efficient debugging tool during development and testing.
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