
Practical Byte-Granular Memory 
Blacklisting using Califorms

Califorms-bitvector
L1 Caliform implementation using a bit vector that indicates whether 
each byte is a security byte. HW overhead of 8B per 64B cache line.

Califorms-sentinel
L2+ Caliform implementation that stores a bit vector in security byte 

locations. HW overhead of 1-bit per 64B cache line.

THE PROBLEM
OUR CONTRIBUTIONS

BACKGROUND

Source: Microsoft Security Response Center (MSRC) - BlueHat 2019

Microsoft Product CVEs

● Memory safety vulnerabilities are 
very easy for programmers to 
introduce unknowingly

● A need for a lower overhead and 
finer-grained (i.e. intra-object) level 
of memory safety

RESULTS

● Califorms offers memory safety by detecting accesses 
to dead bytes in memory. Blacklisted locations are not 
stored beyond the L1 data cache and are identified 
using a special header in the L2 cache (and beyond) 
resulting in very low overhead.

● The conversion between these formats happens when 
lines are filled or spilled between the L1 and L2 caches. 
The absence of blacklisted locations results in the cache 
lines stored in the same natural format across the 
memory system.

Califorms
(Cache Line Formats)

Califorms Schemes

(1) Opportunistic (2) Full (3) Intelligent

Security Policies

IMPACT

SECURITY BENEFITS

● Provides intra-object (i.e. field level) 
memory safety at low overheads 
(~1.02x-1.16x)

● Califorms is agnostic of architecture 
width and can be deployed over a 
diverse device environment

Disjoint Metadata
Whitelisting

Metadata Overhead
2 words (base+size) per pointer

Memory Overhead
∝# of pointers

Performance Overhead
∝# of pointer dereferences

Cojoined Metadata
Whitelisting

Metadata Overhead
256-bits per pointer

Memory Overhead
∝# of pointers & phys mem.

Performance Overhead
∝# of pointer operations

Inline Metadata
Blacklisting

Metadata Overhead
1-bit per byte (naive)

Memory Overhead
∝blacklisted memory

Performance Overhead
∝# of blacklist instructions

Video Paper

● Scalable
○ Architecture width agnostic
○ Low overheads

● Califorms have applications other 
than memory safety
○ Information Flow Tracking

HARDWARE
L1⇒L2 Conversion Algorithm

L2⇒L1 Conversion Algorithm

SOFTWARE
Time

On allocation, a special 
instruction de-blacklists bytes.

To maintain compatibility, 
we (de)serialize data 
passed externally.

On deallocation, we revert 
bytes as blacklisted.

Blacklisting Overheads


