RSAC Security Scholar

Subtractive Hardware Trojans

Mohamed Tarek Ibn Ziad Simha Sethumadhavan (Advisor) Columbia University

Columbia Engineering The Fu Foundation School of Engineering and Applied Science

New Class of Hardware Trojans

- Removes (subtracts) a single wire from the gate-level netlist in order to trojanize the circuit.
- Prior work always adds extra logic gates or changes chemical composition.
 - Smallest additive Trojan is 1 capacitor and transistor (Analog Ο backdoor).

Why Subtract?

- Single wire edits are less likely to break complex fab design rule checks.
- So small that they can bypass post-silicon Trojan detection techniques.

Ex: functional testing, side channel analysis, and reverse engineering. Ο

Rules of the Game (Threat Model)

- Defenders will be running Automatic Test Pattern Generation (ATPG) tests.
- Attackers will have access to ATPG tests.

Strategy:

- 1. Find a circuit that passes all ATPG tests.
- 2. Make it so that circuit has exactly one less wire.
- 3. Find a trigger for that circuit using Boolean Satisfiability (SAT) solver.

Results

• We applied our framework on EPFL and ISCAS-85 benchmark suites.

- Vulnerability to Subtractive Trojans increases with the increase of **circuit size** and **logic depth**.
- We compared the side-channel overheads of Subtractive Trojans vs. traditional Trojans from Trust-Hub.
 - Our Subtractive Trojans are more stealthy, while Ο having almost zero area and power overheads.

Future Work

Develop new methods for detecting Subtractive Hardware Trojans.

RS^AConference